Log in

Structure- and Cation-Dependent Mechanism of Interaction of Tricyclic Antidepressants with NMDA Receptor According to Molecular Modeling Data

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Some tricyclic antidepressants (TCAs), including amitriptyline (ATL), clomipramine (CLO), and desipramine (DES), are known to be effective for management of neuropathic pain. It was previously determined that ATL, CLO, and DES are capable of voltage-dependent blocking of NMDA receptors of glutamate (NMDAR), which play a key role in pathogenesis of neuropathic pain. Despite the similar structure of ATL, CLO, and DES, efficacy of their interaction with NMDAR varies significantly. In the study presented here, we applied molecular modeling methods to investigate the mechanism of binding of ATL, CLO, and DES to NMDAR and to identify structural features of the drugs that determine their inhibitory activity against NMDAR. Molecular docking of the studied TCAs into the NMDAR channel was performed. Conformational behavior of the obtained complexes in the lipid bilayer was simulated by the method of molecular dynamics (MD). A single binding site (upper) for the tertiary amines ATL and CLO and two binding sites (upper and lower) for the secondary amine DES were identified inside the NMDAR channel. The upper and lower binding sites are located along the channel axis at different distances from the extracellular side of the plasma membrane. MD simulation revealed that the position of DES in the lower site is stabilized only in the presence of sodium cation inside the NMDAR channel. DES binds more strongly to NMDAR compared to ATL and CLO due to simultaneous interaction of two hydrogen atoms of its cationic group with the asparagine residues of the ion pore of the receptor. This feature may be responsible for the stronger side effects of DES. It has been hypothesized that ATL binds to NMDAR less efficiently compared to DES and CLO due to its lower conformational mobility. The identified features of the structure- and cation-dependent mechanism of interaction between TCAs and NMDAR will help in the further development of effective and safe analgesic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Abbreviations

ATL:

amitriptyline

CLO:

clomipramine

DES:

desipramine

ELJ-SR and ECOUL-SR :

the short-range Lennard–Jones and Coulomb energies

MD:

molecular dynamics

MK-801:

dizocilpine

NCX:

sodium-calcium exchanger

NMDAR:

N-methyl-D-aspartate receptor

RMSD:

root mean square deviation of atoms from their initial position

TCAs:

tricyclic antidepressants

References

  1. Obata, H. (2017) Analgesic mechanisms of antidepressants for neuropathic pain, Int. J. Mol. Sci., 18, 2483, https://doi.org/10.3390/ijms18112483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fornasari, D. (2017) Pharmacotherapy for neuropathic pain: a review, Pain Ther., 6 (Suppl 1), 25-33, https://doi.org/10.1007/s40122-017-0091-4.

    Article  Google Scholar 

  3. Lenkey, N., Karoly, R., Kiss, J. P., Szasz, B. K., Vizi, E. S., and Mike, A. (2006) The mechanism of activity-dependent sodium channel inhibition by the antidepressants fluoxetine and desipramine, Mol. Pharmacol., 70, 2052-2063, https://doi.org/10.1124/mol.106.026419.

    Article  CAS  PubMed  Google Scholar 

  4. Wu, W., Ye, Q., Wang, W., Yan, L., Wang, Q., **ao, H., and Wan, Q. (2012) Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons, Neurosci. Lett., 506, 307-311, https://doi.org/10.1016/j.neulet.2011.11.031.

    Article  CAS  PubMed  Google Scholar 

  5. Cardoso, F. C., Schmit, M., Kuiper, M. J., Lewis, R. J., Tuck, K. L., and Duggan, P. J. (2021) Inhibition of N-type calcium ion channels by tricyclic antidepressants – experimental and theoretical justification for their use for neuropathic pain, RSC Med. Chem., 13, 183-195, https://doi.org/10.1039/d1md00331c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Punke, M. A., and Friederich, P. (2007) Amitriptyline is a potent blocker of human Kv1.1 and Kv7.2/7.3 channels, Anesth. Analg., 104, 1256-1264, https://doi.org/10.1213/01.ane.0000260310.63117.a2.

    Article  CAS  PubMed  Google Scholar 

  7. Cottingham, C., Percival, S., Birky, T., and Wang, Q. (2014) Tricyclic antidepressants exhibit variable pharmacological profiles at the alpha(2A) adrenergic receptor, BBRC, 451, 461-466, https://doi.org/10.1016/j.bbrc.2014.08.024.

    Article  CAS  PubMed  Google Scholar 

  8. Proudman, R. G. W., Pupo, A. S., and Baker, J. G. (2020) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors, Pharmacol. Res. Perspect., 8, 00602, https://doi.org/10.1002/prp2.602.

    Article  CAS  Google Scholar 

  9. Onali, P., Dedoni, S., and Olianas, M. C. (2010) Direct agonist activity of tricyclic antidepressants at distinct opioid receptor subtypes, J. Pharmacol. Exp. Ther., 332, 255-265, https://doi.org/10.1124/jpet.109.159939.

    Article  CAS  PubMed  Google Scholar 

  10. Jeong, B., Song, Y. P., Chung, J. Y., Park, K. C., Kim, J., So, I., and Hong, C. (2023) Low concentrations of tricyclic antidepressants stimulate TRPC4 channel activity by acting as an opioid receptor ligand, Am. J. Physiol. Cell Physiol., 324, C1295-C1306, https://doi.org/10.1152/ajpcell.00535.2022.

    Article  CAS  PubMed  Google Scholar 

  11. Lin, H., Heo, B. H., Kim, W. M., Kim, Y. C., and Yoon, M. H. (2015) Antiallodynic effect of tianeptine via modulation of the 5-HT7 receptor of GABAergic interneurons in the spinal cord of neuropathic rats, Neurosci. Lett., 598, 91-95, https://doi.org/10.1016/j.neulet.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  12. Moraczewski, J., Awosika, A. O., and Aedma, K. K. (2003) Tricyclic Antidepressants, in StatPearls [Internet], StatPearls Publishing, Treasure Island, F.L.

  13. Tohda, M., Urushihara, H., and Nomura, Y. (1995) Inhibitory effects of antidepressants on NMDA-induced currents in Xenopus oocytes injected with rat brain RNA, Neurochem. Int., 26, 53-58, https://doi.org/10.1016/0197-0186(94)00101-Y.

    Article  CAS  PubMed  Google Scholar 

  14. Szasz, B. K., Mike, A., Karoly, R., Gerevich, Z., Illes, P., Vizi, E. S., and Kiss, J. P. (2007) Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system, Biol. Psychiatry, 62, 1303-1309, https://doi.org/10.1016/j.biopsych.2007.04.014.

    Article  CAS  PubMed  Google Scholar 

  15. Kohno, T., Kimura, M., Sasaki, M., Obata, H., Amaya, F., and Saito, S. (2012) Milnacipran inhibits glutamatergic N-methyl-D-aspartate receptor activity in spinal dorsal horn neurons, Mol. Pain, 8, 45, https://doi.org/10.1186/1744-8069-8-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barygin, O. I., Nagaeva, E. I., Tikhonov, D. B., Belinskaya, D. A., Vanchakova, N. P., and Shestakova, N. N. (2017) Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics, Brain Res., 1660, 58-66, https://doi.org/10.1016/j.brainres.2017.01.028.

    Article  CAS  PubMed  Google Scholar 

  17. Stepanenko, Y. D., Sibarov, D. A., Shestakova, N. N., and Antonov, S. M. (2022) Tricyclic antidepressant structure-related alterations in calcium-dependent inhibition and open-channel block of NMDA receptors, Front. Pharmacol., 12, 815368, https://doi.org/10.3389/fphar.2021.815368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Belinskaia, D. A., Belinskaia, M. A., Barygin, O. I., Vanchakova, N. P., and Shestakova, N. N. (2019) Psychotropic drugs for the management of chronic pain and itch, Pharmaceuticals (Basel), 12, 99, https://doi.org/10.3390/ph12020099.

    Article  CAS  PubMed  Google Scholar 

  19. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4, 17, https://doi.org/10.1186/1758-2946-4-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansen, K. B., Yi, F., Perszyk, R. E., Furukawa, H., Wollmuth, L. P., Gibb, A. J., and Traynelis, S. F. (2018) Structure, function, and allosteric modulation of NMDA receptors, J. Gen. Physiol., 150, 1081-1105, https://doi.org/10.1085/jgp.201812032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stepanenko, Y. D., Boikov, S. I., Sibarov, D. A., Abushik, P. A., Vanchakova, N. P., Belinskaia, D., Shestakova, N. N., and Antonov, S. M. (2019) Dual action of amitriptyline on NMDA receptors: enhancement of Ca-dependent desensitization and trap** channel block, Sci. Rep., 9, 19454, https://doi.org/10.1038/s41598-019-56072-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, X., Jensen, M. Ø., Jogini, V., Stein, R. A., Lee, C. H., Mchaourab, H. S., Shaw, D. E., and Gouaux, E. (2018) Mechanism of NMDA receptor channel block by MK-801 and memantine, Nature, 556, 515-519, https://doi.org/10.1038/s41586-018-0039-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chou, T. H., Epstein, M., Michalski, K., Fine, E., Biggin, P. C., and Furukawa, H. (2022) Structural insights into binding of therapeutic channel blockers in NMDA receptors, Nat. Struct. Mol. Biol., 29, 507-518, https://doi.org/10.1038/s41594-022-00772-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. UniProt Consortium (2023) UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids Res., 51, D523-D531, https://doi.org/10.1093/nar/gkac1052.

    Article  CAS  Google Scholar 

  25. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, https://doi.org/10.1038/msb.2011.75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, J. Mol. Graph., 14, 33-38, https://doi.org/10.1016/0263-7855(96)00018-5.

    Article  CAS  PubMed  Google Scholar 

  27. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781-1802, https://doi.org/10.1002/jcc.20289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lyskov, S., Chou, F. C., Conchúir, S. Ó., Der, B. S., Drew, K., Kuroda, D., Xu, J., Weitzner, B. D., Renfrew, P. D., Sripakdeevong, P., Borgo, B., Havranek, J. J., Kuhlman, B., Kortemme, T., Bonneau, R., Gray, J. J., and Das, R. (2013) Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE), PLoS One, 8, 63906, https://doi.org/10.1371/journal.pone.0063906.

    Article  Google Scholar 

  29. Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Dávila-Contreras, E. M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R. M., Klauda, J. B., and Im, W. (2014) CHARMM-GUI Membrane Builder toward realistic biological membrane simulations, J. Comput. Chem., 35, 1997-2004, https://doi.org/10.1002/jcc.23702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2, 19-25, https://doi.org/10.1016/j.softx.2015.06.001.

    Article  Google Scholar 

  31. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., and MacKerell, A. D., Jr. (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nat. Methods, 14, 71-73, https://doi.org/10.1038/nmeth.4067.

    Article  CAS  PubMed  Google Scholar 

  32. Bussi, G., Zykova-Timan, T., and Parrinello, M. (2009) Isothermal-isobaric molecular dynamics using stochastic velocity rescaling, J. Chem. Phys., 130, 074101, https://doi.org/10.1063/1.3073889.

    Article  CAS  PubMed  Google Scholar 

  33. Parrinello, M., and Rahman, A. (1981) Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., 52, 7182-7190, https://doi.org/10.1063/1.328693.

    Article  CAS  Google Scholar 

  34. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: An N log(N) method for Ewald sums in large systems, J. Chem. Phys., 3, 10089-10092, https://doi.org/10.1063/1.464397.

    Article  Google Scholar 

  35. Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. (1997) LINCS: A linear constraint solver for molecular simulations, J. Comp. Chem., 18, 1463-1473, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.

    Article  CAS  Google Scholar 

  36. Kortagere, S., Ekins, S., and Welsh, W. J. (2008) Halogenated ligands and their interactions with amino acids: implications for structure-activity and structure-toxicity relationships, J. Mol. Graph. Model., 27, 170-177, https://doi.org/10.1016/j.jmgm.2008.04.001.

    Article  CAS  PubMed  Google Scholar 

  37. Shestakova, N. N., and Vanchakova, N. P. (2006) Theoretical conformational analysis of antidepressant as a way for evaluation of their efficiency for pain and itch syndrome management in patients with end-stage renal disease under chronic hemodialysis, Dokl. Biochem. Biophys., 409, 203-205, https://doi.org/10.1134/s160767290604003x.

    Article  CAS  PubMed  Google Scholar 

  38. Hackos, D. H., Lupardus, P. J., Grand, T., Chen, Y., Wang, T. M., Reynen, P., Gustafson, A., Wallweber, H. J., Volgraf, M., Sellers, B. D., Schwarz, J. B., Paoletti, P., Sheng, M., Zhou, Q., and Hanson, J. E. (2016) Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function, Neuron, 89, 983-999, https://doi.org/10.1016/j.neuron.2016.01.016.

    Article  CAS  PubMed  Google Scholar 

  39. Parsons, C. G., Panchenko, V. A., Pinchenko, V. O., Tsyndrenko, A. Y., and Krishtal, O. A. (1996) Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine, Eur. J. Neurosci., 8, 446-454, https://doi.org/10.1111/j.1460-9568.1996.tb01228.x.

    Article  CAS  PubMed  Google Scholar 

  40. Riediger, C., Schuster, T., Barlinn, K., Maier, S., Weitz, J., and Siepmann, T. (2017) Adverse effects of antidepressants for chronic pain: a systematic review and meta-analysis, Front. Neurol., 8, 307, https://doi.org/10.3389/fneur.2017.00307.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sibarov, D. A., Abushik, P. A., Poguzhelskaya, E. E., Bolshakov, K. V., and Antonov, S. M. (2015) Inhibition of plasma membrane Na/Ca-exchanger by KB-R7943 or lithium reveals its role in Ca-dependent N-methyl-d-aspartate receptor inactivation, J. Pharmacol. Exp. Ther., 355, 484-495, https://doi.org/10.1124/jpet.115.227173.

    Article  CAS  PubMed  Google Scholar 

  42. Sibarov, D. A., Poguzhelskaya, E. E., and Antonov, S. M. (2018) Downregulation of calcium-dependent NMDA receptor desensitization by sodium-calcium exchangers: a role of membrane cholesterol, BMC Neurosci., 19, 73, https://doi.org/10.1186/s12868-018-0475-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shestakova, N. N., Sukhov, I. B., and Andreeva-Gateva, P. (2023) Preclinical study of analgesic therapy for diabetic neuropathy in an animal model [in Russian], Vestnik BSMU, Suppl 2, 19-21.

    Google Scholar 

  44. Sukhov, I. B., Chistyakova, O. V., Bayunova, L. V., and Shestakova, N. N. (2023) Evaluation of side effects of Na-Ca exchange inhibitor KB-R7943 used as an analgesic drug in diabetic neuropathy in rats [in Russian], Integr. Physiol., 4, 69-78, https://doi.org/10.33910/2687-1270-2023-4-1-69-78.

    Article  Google Scholar 

  45. Van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H., and Torrance, N. (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies, Pain, 155, 654-662, https://doi.org/10.1016/j.pain.2013.11.013.

    Article  CAS  PubMed  Google Scholar 

  46. Bouhassira, D. (2019) Neuropathic pain: definition, assessment and epidemiology, Rev. Neurol. (Paris), 175, 16-25, https://doi.org/10.1016/j.neurol.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  47. Smith, B. H., Hébert, H. L., and Veluchamy, A. (2020) Neuropathic pain in the community: prevalence, impact, and risk factors, Pain, 161, S127-S137, https://doi.org/10.1097/j.pain.0000000000001824.

    Article  PubMed  Google Scholar 

  48. Smith, B. H., and Torrance, N. (2012) Epidemiology of neuropathic pain and its impact on quality of life, Curr. Pain Headache Rep., 16, 191-198, https://doi.org/10.1007/s11916-012-0256-0.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The computational experiments were performed in the supercomputer center of the Peter the Great St. Petersburg Polytechnic University (https://scc.spbstu.ru).

Funding

The work was financially supported by the State Reserves of the Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences (no. 075-00264-24-00).

Author information

Authors and Affiliations

Authors

Contributions

D.A.B. planned and performed experiments, discussed the results, and prepared the manuscript; N.N.S. conceptualized and supervised the study, planned and performed experiments, discussed the results, prepared and edited the manuscript.

Corresponding author

Correspondence to Daria A. Belinskaia.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belinskaia, D.A., Shestakova, N.N. Structure- and Cation-Dependent Mechanism of Interaction of Tricyclic Antidepressants with NMDA Receptor According to Molecular Modeling Data. Biochemistry Moscow 89, 507–522 (2024). https://doi.org/10.1134/S0006297924030106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924030106

Keywords

Navigation