Log in

rRNA Methylation and Antibiotic Resistance

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Methylation of nucleotides in rRNA is one of the basic mechanisms of bacterial resistance to protein synthesis inhibitors. The genes for corresponding methyltransferases have been found in producer strains and clinical isolates of pathogenic bacteria. In some cases, rRNA methylation by housekee** enzymes is, on the contrary, required for the action of antibiotics. The effects of rRNA modifications associated with antibiotic efficacy may be cooperative or mutually exclusive. Evolutionary relationships between the systems of rRNA modification by housekee** enzymes and antibiotic resistance-related methyltransferases are of particular interest. In this review, we discuss the above topics in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

DC:

decoding center

PET:

peptide exit tunnel

PTC:

peptidyl transferase center

rRNA:

ribosomal RNA

REFERENCES

  1. Arenz, S., and Wilson, D. N. (2016) Bacterial protein synthesis as a target for antibiotic inhibition, Cold Spring Harb. Perspect. Med., 6, a025361, doi: https://doi.org/10.1101/cshperspect.a025361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sergiev, P. V., Aleksashin, N. A., Chugunova, A. A., Polikanov, Y. S., and Dontsova, O. A. (2018) Structural and evolutionary insights into ribosomal RNA methylation, Nat. Chem. Biol., 14, 226-235.

    CAS  PubMed  Google Scholar 

  3. Bogdanov, A. A., Sumbatyan, N. V., Shishkina, A. V., Karpenko, V. V., and Korshunova, G. A. (2010) Ribosomal tunnel and translation regulation, Biochemistry (Moscow), 75, 1501-1516.

    CAS  Google Scholar 

  4. Skinner, R., Cundliffe, E., and Schmidt, F. J. (1983) Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics, J. Biol. Chem., 258, 12702-12706.

    CAS  PubMed  Google Scholar 

  5. Pernodet, J. L., Fish, S., Blondelet-Rouault, M. H., and Cundliffe, E. (1996) The macrolide-lincosamide-streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans, Antimicrob. Agents Chemother., 40, 581-585.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Roberts, M. C., Sutcliffe, J., Courvalin, P., Jensen, L. B., Rood, J., and Seppala, H. (1999) Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants, Antimicrob. Agents Chemother., 43, 2823-2830.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Arthur, M., Brisson-Noël, A., and Courvalin, P. (1987) Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses, J. Antimicrob. Chemother., 20, 783-802.

    CAS  PubMed  Google Scholar 

  8. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J. Mol. Biol., 215, 403-410.

    CAS  PubMed  Google Scholar 

  9. Bhujbalrao, R., and Anand, R. (2019) Deciphering determinants in ribosomal methyltransferases that confer antimicrobial resistance, J. Am. Chem. Soc., 141, 1425-1429.

    CAS  PubMed  Google Scholar 

  10. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605-1612.

    CAS  PubMed  Google Scholar 

  11. The RNAcentral Consortium (2019) RNAcentral: a hub of information for non-coding RNA sequences, Nucleic Acids Res., 47, D221-D229.

    Google Scholar 

  12. Hansen, J. L., Ippolito, J. A., Ban, N., Nissen, P., Moore, P. B., and Steitz, T. A. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit, Mol. Cell, 10, 117-128.

    CAS  PubMed  Google Scholar 

  13. Bulkley, D., Innis, C. A., Blaha, G., and Steitz, T. A. (2010) Revisiting the structures of several antibiotics bound to the bacterial ribosome, Proc. Natl. Acad. Sci. USA, 107, 17158-17163.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Svetlov, M. S., Plessa, E., Chen, C.-W., Bougas, A., Krokidis, M. G., Dinos, G. P., and Polikanov, Y. S. (2019) High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition, RNA, 25, 600-606.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta, P., Sothiselvam, S., Vázquez-Laslop, N., and Mankin, A. S. (2013) Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible, Nat. Commun., 4, 1984.

    PubMed  Google Scholar 

  16. Subramanian, S. L., Ramu, H., and Mankin, A. S. (2012) Inducible resistance to macrolide antibiotics, in Antibiotic Discovery and Development (Dougherty, T. J., and Pucci, M. J., eds.) Springer US, Boston, MA, pp. 455-484.

  17. Vazquez-Laslop, N., Thum, C., and Mankin, A. S. (2008) Molecular mechanism of drug-dependent ribosome stalling, Mol. Cell, 30, 190-202.

    CAS  PubMed  Google Scholar 

  18. Arenz, S., Ramu, H., Gupta, P., Berninghausen, O., Beckmann, R., Vázquez-Laslop, N., Mankin, A. S., and Wilson, D. N. (2014) Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide, Nat. Commun., 5, 3501.

    PubMed  Google Scholar 

  19. Weisblum, B. (1995) Insights into erythromycin action from studies of its activity as inducer of resistance, Antimicrob. Agents Chemother., 39, 797-805.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kwak, J. H., Choi, E. C., and Weisblum, B. (1991) Transcriptional attenuation control of ermK, a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus licheniformis, J. Bacteriol., 173, 4725-4735.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Morris, R. P., Nguyen, L., Gatfield, J., Visconti, K., Nguyen, K., et al. (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, 102, 12200-12205.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta, P., Kannan, K., Mankin, A. S., and Vázquez-Laslop, N. (2013) Regulation of gene expression by macrolide-induced ribosomal frameshifting, Mol. Cell, 52, 629-642.

    CAS  PubMed  Google Scholar 

  23. Liu, M., and Douthwaite, S. (2002) Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy, Proc. Natl. Acad. Sci. USA, 99, 14658-14663.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, M., and Douthwaite, S. (2002) Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Gram-positive bacteria, Mol. Microbiol., 44, 195-204.

    CAS  PubMed  Google Scholar 

  25. Yakhnin, H., Yakhnin, A. V., Mouery, B. L., Mandell, Z. F., Karbasiafshar, C., Kashlev, M., and Babitzke, P. (2019) NusG-dependent RNA polymerase pausing and tylosin-Dependent ribosome stalling are required for tylosin resistance by inducing 23S rRNA methylation in Bacillus subtilis, mBio, 10, e02665-19.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Takaya, A., Sato, Y., Shoji, T., and Yamamoto, T. (2013) Methylation of 23S rRNA nucleotide G748 by RlmAII methyltransferase renders Streptococcus pneumoniae telithromycin susceptible, Antimicrob. Agents Chemother., 57, 3789-3796.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Desmolaize, B., Fabret, C., Brégeon, D., Rose, S., Grosjean, H., and Douthwaite, S. (2011) A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA, Nucleic Acids Res., 39, 9368-9375.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shoji, T., Takaya, A., Sato, Y., Kimura, S., Suzuki, T., and Yamamoto, T. (2015) RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility, Nucleic Acids Res., 43, 8964-8972.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Long, K. S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S., and Vester, B. (2006) The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics, Antimicrob. Agents Chemother., 50, 2500-2505.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. LaMarre, J. M., Locke, J. B., Shaw, K. J., and Mankin, A. S. (2011) Low fitness cost of the multidrug resistance gene cfr, Antimicrob. Agents Chemother., 55, 3714-3719.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith, L. K., and Mankin, A. S. (2008) Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors, Antimicrob. Agents Chemother., 52, 1703-1712.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Toh, S.-M., **ong, L., Bae, T., and Mankin, A. S. (2008) The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA, RNA, 14, 98-106.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. LaMarre, J. M., Howden, B. P., and Mankin, A. S. (2011) Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance, Antimicrob. Agents Chemother., 55, 2989-2991.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pletnev, P., Guseva, E., Zanina, A., Evfratov, S., Dzama, M., et al. (2020) Comprehensive functional analysis of Escherichia coli ribosomal RNA methyltransferases, Front. Genet., 11, 97.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vázquez-Laslop, N., Ramu, H., Klepacki, D., Kannan, K., and Mankin, A. S. (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide, EMBO J., 29, 3108-3117.

    PubMed  PubMed Central  Google Scholar 

  36. Kaminska, K. H., Purta, E., Hansen, L. H., Bujnicki, J. M., Vester, B., and Long, K. S. (2010) Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria, Nucleic Acids Res., 38, 1652-1663.

    CAS  PubMed  Google Scholar 

  37. Giessing, A. M. B., Jensen, S. S., Rasmussen, A., Hansen, L. H., Gondela, A., Long, K., Vester, B., and Kirpekar, F. (2009) Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria, RNA, 15, 327-336.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan, F., LaMarre, J. M., Röhrich, R., Wiesner, J., Jomaa, H., Mankin, A. S., and Fujimori, D. G. (2010) RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA, J. Am. Chem. Soc., 132, 3953-3964.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Atkinson, G. C., Hansen, L. H., Tenson, T., Rasmussen, A., Kirpekar, F., and Vester, B. (2013) Distinction between the Cfr methyltransferase conferring antibiotic resistance and the housekee** RlmN methyltransferase, Antimicrob. Agents Chemother., 57, 4019-4026.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stojković, V., Noda-Garcia, L., Tawfik, D. S., and Fujimori, D. G. (2016) Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme, Nucleic Acids Res., 44, 8897-8907.

    PubMed  PubMed Central  Google Scholar 

  41. Benítez-Páez, A., Villarroya, M., and Armengod, M.-E. (2012) The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy, RNA, 18, 1783-1795.

    PubMed  PubMed Central  Google Scholar 

  42. Conrad, J., Sun, D., Englund, N., and Ofengand, J. (1998) The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23 S ribosomal RNA, J. Biol. Chem., 273, 18562-18566.

    CAS  PubMed  Google Scholar 

  43. Toh, S.-M., and Mankin, A. S. (2008) An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors, J. Mol. Biol., 380, 593-597.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Davies, J., Gorini, L., and Davis, B. D. (1965) Misreading of RNA codewords induced by aminoglycoside antibiotics, Mol. Pharmacol., 1, 93-106.

    CAS  PubMed  Google Scholar 

  45. Hausner, T. P., Geigenmüller, U., and Nierhaus, K. H. (1988) The allosteric three-site model for the ribosomal elongation cycle. New insights into the inhibition mechanisms of aminoglycosides, thiostrepton, and viomycin, J. Biol. Chem., 263, 13103-13111.

    CAS  PubMed  Google Scholar 

  46. Doi, Y., and Arakawa, Y. (2007) 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides, Clin. Infect. Dis., 45, 88-94.

    CAS  PubMed  Google Scholar 

  47. Grosjean, H. (2009) DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, Landes Bioscience, Austin, Tex.

  48. Doi, Y., Wachino, J., and Arakawa, Y. (2016) Aminoglycoside resistance, Infect. Dis. Clin. North Am., 30, 523-537.

    PubMed  PubMed Central  Google Scholar 

  49. Wachino, J., Shibayama, K., Kurokawa, H., Kimura, K., Yamane, K., Suzuki, S., Shibata, N., Ike, Y., and Arakawa, Y. (2007) Novel plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides, Antimicrob. Agents Chemother., 51, 4401-4409.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Macmaster, R., Zelinskaya, N., Savic, M., Rankin, C. R., and Conn, G. L. (2010) Structural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria, Nucleic Acids Res., 38, 7791-7799.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Borovinskaya, M. A., Pai, R. D., Zhang, W., Schuwirth, B. S., Holton, J. M., et al. (2007) Structural basis for aminoglycoside inhibition of bacterial ribosome recycling, Nat. Struct. Mol. Biol., 14, 727-732.

    CAS  PubMed  Google Scholar 

  52. Stanley, R. E., Blaha, G., Grodzicki, R. L., Strickler, M. D., and Steitz, T. A. (2010) The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome, Nat. Struct. Mol. Biol., 17, 289-293.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Selmer, M., Dunham, C. M., Murphy, F. V., Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R., and Ramakrishnan, V. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA, Science, 313, 19351942.

    Google Scholar 

  54. Galimand, M., Schmitt, E., Panvert, M., Desmolaize, B., Douthwaite, S., Mechulam, Y., and Courvalin, P. (2011) Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM, RNA, 17, 251-262.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Demirci, H., Larsen, L. H. G., Hansen, T., Rasmussen, A., Cadambi, A., Gregory, S. T., Kirpekar, F., and Jogl, G. (2010) Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus, RNA, 16, 1584-1596.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. François, B., Russell, R. J. M., Murray, J. B., Aboul-ela, F., Masquida, B., Vicens, Q., and Westhof, E. (2005) Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding, Nucleic Acids Res., 33, 5677-5690.

    PubMed  PubMed Central  Google Scholar 

  57. Maus, C. E., Plikaytis, B. B., and Shinnick, T. M. (2005) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 49, 571-577.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sałamaszyńska-Guz, A., Rose, S., Lykkebo, C. A., Taciak, B., Bącal, P., Uśpieński, T., and Douthwaite, S. (2017) Biofilm formation and motility are promoted by Cj0588-directed methylation of rRNA in Campylobacter jejuni, Front. Cell. Infect. Microbiol., 7, 533.

    PubMed  Google Scholar 

  59. Johansen, S. K., Maus, C. E., Plikaytis, B. B., and Douthwaite, S. (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs, Mol. Cell, 23, 173-182.

    CAS  PubMed  Google Scholar 

  60. Ermolenko, D. N., Spiegel, P. C., Majumdar, Z. K., Hickerson, R. P., Clegg, R. M., and Noller, H. F. (2007) The antibiotic viomycin traps the ribosome in an intermediate state of translocation, Nat. Struct. Mol. Biol., 14, 493-497.

    CAS  PubMed  Google Scholar 

  61. Monshupanee, T., Johansen, S. K., Dahlberg, A. E., and Douthwaite, S. (2012) Capreomycin susceptibility is increased by TlyA-directed 2′-O-methylation on both ribosomal subunits, Mol. Microbiol., 85, 1194-1203.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rahman, A., Srivastava, S. S., Sneh, A., Ahmed, N., and Krishnasastry, M. V. (2010) Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: a non-conventional hemolysin and a ribosomal RNA methyl transferase, BMC Biochem., 11, 35.

    PubMed  PubMed Central  Google Scholar 

  63. Freihofer, P., Akbergenov, R., Teo, Y., Juskeviciene, R., Andersson, D. I., and Böttger, E. C. (2016) Nonmutational compensation of the fitness cost of antibiotic resistance in mycobacteria by overexpression of tlyA rRNA methylase, RNA, 22, 1836-1843.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Felnagle, E. A., Rondon, M. R., Berti, A. D., Crosby, H. A., and Thomas, M. G. (2007) Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin, Appl. Environ. Microbiol., 73, 4162-4170.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bijpuria, S., Sharma, R., and Taneja, B. (2020) Deletion of RsmE 16S rRNA methyltransferase leads to low level increase in aminoglycoside resistance in Mycobacterium smegmatis, bioRxiv, doi: https://doi.org/10.1101/2020.01.15.907279.

  66. Basturea, G. N., Rudd, K. E., and Deutscher, M. P. (2006) Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family, RNA, 12, 426-434.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Andersen, N. M., and Douthwaite, S. (2006) YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407, J. Mol. Biol., 359, 777-786.

    CAS  PubMed  Google Scholar 

  68. Gutierrez, B., Escudero, J. A., San Millan, A., Hidalgo, L., Carrilero, L., et al. (2012) Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekee** methyltransferases, Antimicrob. Agents Chemother., 56, 2335-2341.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lioy, V. S., Goussard, S., Guerineau, V., Yoon, E.-J., Courvalin, P., Galimand, M., and Grillot-Courvalin, C. (2014) Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host, RNA, 20, 382-391.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kimura, S., and Suzuki, T. (2010) Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA, Nucleic Acids Res., 38, 1341-1352.

    CAS  PubMed  Google Scholar 

  71. Vidučić, D., Obranić, S., Matovina, M., Babić, F., and Vlahoviček, G. M. (2014) Host fitness effects of aminoglycoside resistance 16S rRNA G1405 and A1408 methyltransferases from clinical pathogens and natural antibiotic producers, FEBS J., 281, Suppl. s1, 285.

    Google Scholar 

  72. Thompson, J., Schmidt, F., and Cundliffe, E. (1982) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton, J. Biol. Chem., 257, 7915-7917.

    CAS  PubMed  Google Scholar 

  73. Lentzen, G., Klinck, R., Matassova, N., Aboul-ela, F., and Murchie, A. I. H. (2003) Structural basis for contrasting activities of ribosome binding thiazole antibiotics, Chem. Biol., 10, 769-778.

    CAS  PubMed  Google Scholar 

  74. Harms, J. M., Wilson, D. N., Schluenzen, F., Connell, S. R., Stachelhaus, T., et al. (2008) Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin, Mol. Cell, 30, 26-38.

    CAS  PubMed  Google Scholar 

  75. Cundliffe, E., and Thompson, J. (1981) The mode of action of nosiheptide (multhiomycin) and the mechanism of resistance in the producing organism, J. Gen. Microbiol., 126, 185-192.

    CAS  PubMed  Google Scholar 

  76. Arenz, S., Juette, M. F., Graf, M., Nguyen, F., Huter, P., Polikanov, Y. S., Blanchard, S. C., and Wilson, D. N. (2016) Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome, Proc. Natl. Acad. Sci. USA, 113, 7527-7532.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Weitnauer, G., Gaisser, S., Trefzer, A., Stockert, S., Westrich, L., Quiros, L. M., Mendez, C., Salas, J. A., and Bechthold, A. (2001) An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tü57, Antimicrob. Agents Chemother., 45, 690-695.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Treede, I., Jakobsen, L., Kirpekar, F., Vester, B., Weitnauer, G., Bechthold, A., and Douthwaite, S. (2003) The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose, Mol. Microbiol., 49, 309-318.

    CAS  PubMed  Google Scholar 

  79. Mann, P. A., **ong, L., Mankin, A. S., Chau, A. S., Mendrick, C. A., et al. (2001) EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance, Mol. Microbiol., 41, 1349-1356.

    CAS  PubMed  Google Scholar 

  80. Ballesta, J. P., and Cundliffe, E. (1991) Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum, J. Bacteriol., 173, 7213-7218.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mankin, A. S. (1997) Pactamycin resistance mutations in functional sites of 16 S rRNA, J. Mol. Biol., 274, 8-15.

    CAS  PubMed  Google Scholar 

  82. Polikanov, Y. S., Osterman, I. A., Szal, T., Tashlitsky, V. N., Serebryakova, M. V., et al. (2014) Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome, Mol. Cell, 56, 531-540.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lesnyak, D. V., Osipiuk, J., Skarina, T., Sergiev, P. V., Bogdanov, A. A., et al. (2007) Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure, J. Biol. Chem., 282, 5880-5887.

    CAS  PubMed  Google Scholar 

  84. Gu, X. R., Gustafsson, C., Ku, J., Yu, M., and Santi, D. V. (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 4053-4057.

    CAS  PubMed  Google Scholar 

  85. Tscherne, J. S., Nurse, K., Popienick, P., Michel, H., Sochacki, M., and Ofengand, J. (1999) Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 1884-1892.

    CAS  PubMed  Google Scholar 

  86. Prokhorova, I. V., Osterman, I. A., Burakovsky, D. E., Serebryakova, M. V., Galyamina, M. A., et al. (2013) Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon, Sci. Rep., 3, 3236.

    PubMed  PubMed Central  Google Scholar 

  87. Helser, T. L., Davies, J. E., and Dahlberg, J. E. (1972) Mechanism of kasugamycin resistance in Escherichia coli, Nature New Biol., 235, 6-9.

    CAS  PubMed  Google Scholar 

  88. Schluenzen, F., Takemoto, C., Wilson, D. N., Kaminishi, T., Harms, J. M., et al. (2006) The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation, Nat. Struct. Mol. Biol., 13, 871-878.

    CAS  PubMed  Google Scholar 

  89. Vila-Sanjurjo, A., Squires, C. L., and Dahlberg, A. E. (1999) Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli, J. Mol. Biol., 293, 1-8.

    CAS  PubMed  Google Scholar 

  90. Demirci, H., Murphy, F., Belardinelli, R., Kelley, A. C., Ramakrishnan, V., et al. (2010) Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function, RNA, 16, 2319-2324.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Connolly, K., Rife, J. P., and Culver, G. (2008) Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA, Mol. Microbiol., 70, 1062-1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mecsas, J., Bilis, I., and Falkow, S. (2001) Identification of attenuated Yersinia pseudotuberculosis strains and characterization of an orogastric infection in BALB/c mice on day 5 postinfection by signature-tagged mutagenesis, Infect. Immun., 69, 2779-2787.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Structure of the 30S ribosomal subunit, Nature, 407, 327-339.

    CAS  PubMed  Google Scholar 

  94. Schuwirth, B. S., Day, J. M., Hau, C. W., Janssen, G. R., Dahlberg, A. E., Cate, J. H. D., and Vila-Sanjurjo, A. (2006) Structural analysis of kasugamycin inhibition of translation, Nat. Struct. Mol. Biol, 13, 879-886.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Demirci, H., Murphy, F. V., Murphy, E. L., Connetti, J. L., Dahlberg, A. E., Jogl, G., and Gregory, S. T. (2014) Structural analysis of base substitutions in Thermus thermophilus 16S rRNA conferring streptomycin resistance, Antimicrob. Agents Chemother., 58, 4308-4317.

    PubMed  PubMed Central  Google Scholar 

  96. Nishimura, K., Hosaka, T., Tokuyama, S., Okamoto, S., and Ochi, K. (2007) Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2), J. Bacteriol., 189, 3876-3883.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Suzuki, Y., and Ochi, K. (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria, Mol. Microbiol., 63, 1096-1106.

    CAS  PubMed  Google Scholar 

  98. Mikheil, D. M., Shippy, D. C., Eakley, N. M., Okwumabua, O. E., and Fadl, A. A. (2012) Deletion of gene encoding methyltransferase (gidB) confers high-level antimicrobial resistance in Salmonella, J. Antibiot., 65, 185-192.

    CAS  Google Scholar 

  99. Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics, Nature, 407, 340-348.

    CAS  PubMed  Google Scholar 

  100. Benítez-Páez, A., Cárdenas-Brito, S., Corredor, M., Villarroya, M., and Armengod, M. E. (2013) Mutaciones en genes modificadores de ARN ribosómico y la resistencia a aminoglucósidos: el caso del gen rsmG, Biomédica, 34, 41, doi: https://doi.org/10.7705/biomedica.v34i0.1702.

    Article  Google Scholar 

  101. Gustafsson, C., and Persson, B. C. (1998) Identification of the rrmA gene encoding the 23S rRNA m1G745 methyltransferase in Escherichia coli and characterization of an m1G745-deficient mutant, J. Bacteriol., 180, 359-365.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jenner, L., Starosta, A. L., Terry, D. S., Mikolajka, A., Filonava, L., et al. (2013) Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis, Proc. Natl. Acad. Sci. USA, 110, 3812-3816.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lupien, A., Gingras, H., Leprohon, P., and Ouellette, M. (2015) Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA, J. Antimicrob. Chemother., 70, 2973-2980.

    CAS  PubMed  Google Scholar 

  104. Nichols, R. J., Sen, S., Choo, Y. J., Beltrao, P., Zietek, M., et al. (2011) Phenotypic landscape of a bacterial cell, Cell, 144, 143-156.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project nos. 20-04-00736 and 20-54-53014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Sergiev.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osterman, I.A., Dontsova, O.A. & Sergiev, P.V. rRNA Methylation and Antibiotic Resistance. Biochemistry Moscow 85, 1335–1349 (2020). https://doi.org/10.1134/S000629792011005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792011005X

Keywords

Navigation