Log in

Kinetic Measurements of Singlet Oxygen Phosphorescence in Hydrogen-Free Solvents by Time-Resolved Photon Counting

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Solvents lacking hydrogen atoms are very convenient models for elucidating the properties of singlet oxygen, since the lifetime of singlet oxygen in these solvents reaches tens milliseconds. Measuring intrinsic infrared (IR) phosphorescence of singlet oxygen at 1270 nm is the most reliable method of singlet oxygen detection. However, efficient application of the phosphorescence method to these models requires an equipment allowing reliable measurement of the phosphorescence kinetic parameters in the millisecond time range at low rates of singlet oxygen generation, which is a technically difficult problem. Here, we describe a highly sensitive LED (laser) spectrometer recently constructed in our laboratory for the steady-state and time-resolved measurements of the millisecond phosphorescence of singlet oxygen. In the steady-state mode, this spectrometer allows detection of singlet oxygen phosphorescence upon direct excitation of oxygen molecules in the region of dark-red absorption bands at 690 and 765 nm. For kinetic measurements, we used phenalenone as a photo-sensitizer, microsecond pulses of violet (405 nm) LED for excitation (irradiance intensity, <50 μW/cm2), a photomultiplier and a computer multichannel scaler for time-resolved photon counting. The decays of singlet oxygen in air-saturated CCl4, C6F6, and Freon 113 and quenching of singlet oxygen by phenalenone and dissolved molecules of triplet oxygen were measured. The relative values of the radiative rate constants of singlet oxygen in these media were determined. The results were compared with the absorption coefficients of oxygen measured by our group using the methods of laser photochemistry. Critical discussion of the obtained results and the data of other researchers is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cw:

continuous wave (waveform)

DPBF:

1,3-diphenylisobenzofuran

Freon 113:

1,1,2-trifluoro-1,2,2-trichloroethane

IR:

infrared

LED:

light-emitting diode

TPP:

tetraphenylporphin

References

  1. Krasnovsky, A. A., Jr. (2015) Singlet oxygen and primary mechanisms of photodynamic and laser medicine, in Basic Science for Medicine: Biophysical and Medical Technology (Grigoriev, A. I., and Vladimirov, Yu. A., eds.) [in Russian], Maks Press Ltd., Moscow, pp. 173–217.

    Google Scholar 

  2. Nonell, S., and Flors, C. (2016) Singlet Oxygen: Applications in Biosciences and Nanosciences (Comprehensive Series in Photochemistry and Photobiology, No. 13), The Royal Society of Chemistry, European Society for Photobiology, UK.

    Book  Google Scholar 

  3. Krasnovsky, A. A., Jr. (1979) Photoluminescence of singlet oxygen in pigment solutions, Photochem. Photobiol., 29, 29–36.

    Article  CAS  Google Scholar 

  4. Krasnovsky, A. A., Jr. (1993) Detection of photosensitized singlet oxygen luminescence in systems of biomedical importance. Steady–state and time–resolved spectral meas–urements based on application of S–1 photomultiplier tubes, SPIE Proc., 1887, 177–186.

    Article  Google Scholar 

  5. Merkel, P. B., and Kearns, D. R. (1972) Radiationless decay of singlet molecular oxygen in solution. An experi–mental and theoretical study of electronic–to–vibrational energy transfer, J. Amer. Chem. Soc., 94, 7244–7253.

    Article  CAS  Google Scholar 

  6. Salokhiddinov, K. I., Byteva, I. M., and Dzhagarov, B. M. (1979) Duration of luminescence of singlet oxygen in solu–tions under pulsed laser excitation, Russ. Opt. Spektr., 47, 881–886.

    CAS  Google Scholar 

  7. Byteva, I. M., and Gurinovich, G. P. (1979) Sensitized luminescence of oxygen in solutions, J. Luminescence, 21, 17–20.

    Article  CAS  Google Scholar 

  8. Byteva, I. M. (1979) Investigation of luminescence of oxy–gen in solutions by the method of pulsed spectroscopy, Zh. Prikl. Spektr. (J. Appl. Spektr., Minsk), 31, 333–335.

    CAS  Google Scholar 

  9. Schmidt, R., and Brauer, H.–D. (1987) Radiationless deac–tivation of singlet oxygen (1Δg) by solvent molecules, J. Am. Chem. Soc., 109, 6976–6981.

    Article  CAS  Google Scholar 

  10. Schmidt, R. (1989) Influence of heavy atoms on the deac–tivation of singlet oxygen (1Δg) in solution, J. Am. Chem. Soc., 111, 6983–6987.

    Article  CAS  Google Scholar 

  11. Losev, A. P., Byteva, I. M., and Gurinovich, G. P. (1988) Singlet oxygen luminescence yield in organic solvents and water, Chem. Phys. Lett., 143, 127–129.

    Article  CAS  Google Scholar 

  12. Losev, A. P., Byteva, I. M., and Gurinovich, G. P. (1989) Deactivation of singlet oxygen in CCl4 and CS2, Russ. Chem. Phys., 8, 732–739.

    CAS  Google Scholar 

  13. Afshari, E., and Schmidt, R. (1991) Isotope–dependent quenching of singlet molecular oxygen (1Δg) by ground–state oxygen in several perhalogenated solvents, Chem. Phys. Lett., 184, 128–132.

    Article  CAS  Google Scholar 

  14. Schweitzer, C., and Schmidt, R. (2003) Physical mecha–nisms of generation and deactivation of singlet oxygen, Chem. Rev., 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  15. Bagrov, I. V., Belousova, I. M., Danilov, O. B., Kiselev, V. M., Murav’eva, T. D., and Sosnov, E. N. (2007) Photoinduced quenching of luminescence of singlet oxygen in solutions of fullerenes, Opt. Spectrosc., 102, 52–59.

    Article  CAS  Google Scholar 

  16. Bagrov, I. V., Kiselev, V. M., Kislyakov, I. M., and Sosnov, E. N. (2014) Direct optical excitation of singlet oxygen in organic solvents, Opt. Spectrosc., 116, 567–574.

    Article  CAS  Google Scholar 

  17. Wang, J., Leng, J., Yang, H., Sha, G., and Zhang, C. (2014) Luminescence properties and kinetic analysis of singlet oxygen from fullerene solutions, J. Luminescence, 149, 267–271.

    Article  CAS  Google Scholar 

  18. Hasebe, N., Suzuki, K., Horiuchi, H., Suzuki, H., Yoshihara, T., Okutsu, T., and Tobita, S. (2015) Absolute phosphorescence quantum yields of singlet molecular oxy–gen in solution determined using an integrating sphere instrument, Anal. Chem., 87, 2360–2366.

    Article  CAS  PubMed  Google Scholar 

  19. Egorov, S. Yu., and Krasnovsky, A. A., Jr. (1983) Photosensitized luminescence of singlet oxygen under pulse laser excitation. Decay kinetics in aqueous solutions, Biophysics, 28, 497–498.

    CAS  Google Scholar 

  20. Krasnovsky, A. A., Jr., Egorov, S.Yu., Nasarova, O. V., Yartsev, E. I., and Ponomarev, G. V. (1988) Photosensitized formation of singlet molecular oxygen in solutions of water–soluble porphyrins. Direct luminescence measurements, Stud. Biophys., 124, 123–142.

    Google Scholar 

  21. Egorov, S. Yu., Kamalov, V. F., Koroteev, N. I., Krasnovsky, A. A., Jr., Toleutaev, B. N., and Zinukov, S. V. (1989) Rise and decay kinetics of photosensitized singlet oxygen lumi–nescence in water. Measurements with nanosecond time–correlated photon counting technique, Chem. Phys. Lett., 163, 421–424.

    Article  CAS  Google Scholar 

  22. Krasnovsky, A. A., Jr., and Kozlov, A. S. (2017) Laser pho–tochemistry of oxygen. Application to studies of the absorp–tion spectra of dissolved oxygen molecules, J. Biomed. Photon. Eng., 3, 1–10.

    Article  Google Scholar 

  23. Benditkis, A. S., Kozlov, A. S., Goncharov, S. E., and Krasnovsky, A. A., Jr. (2018) Absorption of dark red laser light by oxygen molecules in organic media. Results of pho–tochemical and luminescence measurements, Proc. Int. Conf, on Laser Optics (ICLO 2018), IEEE Xplor Digital Library, p. 598.

    Google Scholar 

  24. Oliveros, E., Suardi–Murasecco, P., Aminian–Saghafi, T., and Braun, A. M. (1991) 1H–phenalen–1–one: photophys–ical properties and singlet oxygen production, Helv. Chim. Acta, 74, 79–90.

    Article  CAS  Google Scholar 

  25. Krasnovsky, A. A., Jr., Sukhorukov, V. L., Egorov, S. Yu., and Potapenko, A. Ya. (1986) Generation and quenching of singlet molecular oxygen by furocoumarins. Direct luminescence measurements, Stud. Biophys., 114, 149–158.

    Google Scholar 

  26. Scurlock, R. D., and Ogilby, P. R. (1989) Singlet molecular oxygen (1Δ2O2) formation upon irradiation of an oxygen (3Σg–O2) organic molecule charge–transfer absorption band absorption band, J. Phys. Chem., 93, 5493–5500.

    Article  CAS  Google Scholar 

  27. Bregnhoj, M., Krægpoth, M. V., Serensen, R. J., Westberg M., and Ogilby, P. R. (2016) Solvent and heavy–atom effects on the O2(X3Σg–) → O2(b1Σg +) absorption transition, J. Phys. Chem. A, 120, 8285–8296.

    Article  CAS  PubMed  Google Scholar 

  28. Krasnovsky, A. A., Jr., and Neverov, K. V. (2010) On the mechanism of photosensitized luminescence of singlet oxy–gen dimols in air–saturated pigment solutions, Biophysics, 55, 349–352.

    Article  Google Scholar 

  29. Batino, R., Rettich, T. R., and Tominaga, T. (1983) The solubility of oxygen and ozone in liquids, J. Phys. Chem. Ref. Data, 12, 163–178.

    Article  Google Scholar 

  30. Murov, S. L., Charmichael, I., and Hug, G. L. (1993) Handbook of Photochemistry, Marcel Dekker Inc., New York–Basel–Hong Kong.

    Google Scholar 

  31. Matheson, I. B. C., Lee, J., Yamanashi, B. S., and Wolbarsht, M. L. (1974) Measurement of the absolute rate constants for singlet molecular oxygen (1Δg) reaction with 1,3–diphenylisobenzofuran and physical quenching by ground state molecular oxygen, J. Am. Chem. Soc., 96, 3343–3358.

    Article  CAS  Google Scholar 

  32. Schmidt, R., Tanelian, C., Dunsbach, R., and Wolff, C. J. (1994) Phenalenone, a universal reference compound for the determination of yields of singlet oxygen O2(1Δg) sensi–tization, J. Photochem. Photobiol. A: Chem., 79, 11–17.

    Article  CAS  Google Scholar 

  33. Krasnovsky, A. A., Jr., Roumbal, Ya. V., Ivanov, A. V., and Ambartzumian, R. V. (2006) Solvent dependence of the steady–state rate of 1O2 generation upon excitation of dis–solved oxygen by cw 1267 nm laser radiation in air–saturat–ed solutions. Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wave–length, Chem. Phys. Lett., 430, 260–264.

    Article  CAS  Google Scholar 

  34. Krasnovsky, A. A., Jr., and Kozlov, A. S. (2014) New approach to measurement of IR absorption spectra of dis–solved oxygen molecules based on photochemical activity of oxygen upon direct laser excitation, Biofizika, 59, 199–205.

    CAS  Google Scholar 

  35. Krasnovsky, A. A., Jr., and Kozlov, A. S. (2016) Photonics of dissolved oxygen molecules. Comparison of the rates of direct and photosensitized excitation of oxygen and reeval–uation of the oxygen absorption coefficients, J. Photochem. Photobiol., A: Chemistry, 329, 167–174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasnovsky.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 2, pp. 240–251.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM18-244, December 24, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnovsky, A.A., Benditkis, A.S. & Kozlov, A.S. Kinetic Measurements of Singlet Oxygen Phosphorescence in Hydrogen-Free Solvents by Time-Resolved Photon Counting. Biochemistry Moscow 84, 153–163 (2019). https://doi.org/10.1134/S0006297919020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919020068

Keywords

Navigation