Log in

Forecasting credit portfolio components with a Markov chain model

  • Applications of Mathematical Programming
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the forecasting problem for components of a bank’s credit portfolio, in particular, for the share of non-performing loans. We assume that changes in the portfolio are described by a Markov random process with discrete time and finite number of states. By the state of a loan we mean that it belongs to a certain group of loans with respect to the existence and duration of arrears. We assume that the matrix of transitional probabilities is not known exactly, and information about it is collected during the system’s operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markov, A.A., Extension of the Law of Large Numbers to Dependent Variables, Izv. Fiz.-Mat. Obshch. Kazan. Univ., 1906, ser. 2, vol. 15, pp. 135–156.

    Google Scholar 

  2. Jones, M.T., Estimating Markov Transition Matrices Using Proportions Data: An Application to Credit Risk, IMF Working Paper, 2005, WP-05-219.

  3. Thyagarajan, V. and Saiful, M., Retail Banking Loan Portfolio Equilibrium Mix: A Markov Chain Model Analysis, Am. J. Appl. Sci., 2005, vol. 2(1), pp. 410–419.

    Article  Google Scholar 

  4. Zhuravel’, Yu.Yu., Modern Problems in Reserving a Retail Credit Portfolio, Bankovs. Riteil, 2007, no. 4, pp. 21–36.

  5. Timofeev, N.A., Mathematical Model of Vintage Analysis for a Bank’s Credit Portfolio, Vestn. UrGUPS, 2011, vol. 9, no. 1, pp. 86–92.

    MathSciNet  Google Scholar 

  6. Lee, T.C., Judge, G.G., and Zellner, A., Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data, Amsterdam: North Holland, 1970.

    MATH  Google Scholar 

  7. Mezhdunarodnaya konvergentsiya izmereniya kapitala i standartov kapitala. Utochnennye ramochnye podkhody (International Convergence in Measuring Capital and Capital Standards. Specified Framework Approaches), Basel Banking Overseer Committee, Moscow: Bank Mezhd. Raschetov, 2004.

  8. Kan, Yu.S. and Kibzun, A.I., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria), Moscow: Fizmatlit, 2009.

    MATH  Google Scholar 

  9. Varaiya, P. and Kurzhanski, A.B., Ellipsoidal Methods for Dynamics and Control. Part I, J. Math. Sci., 2006, vol. 139(5), pp. 6863–6901.

    Article  MathSciNet  MATH  Google Scholar 

  10. Matasov, A.I., Vvedenie v teoriyu garantiruyushchego otsenivaniya (Introduction to Guaranteeing Estimation Theory), Moscow: Mosk. Aviats. Inst., 1999.

    Google Scholar 

  11. Gusev, M.I., On External Estimates on Reachability Sets for Nonlinear Controllable Systems, Tr. Inst. Mat. Mekh. UrO RAN, 2011, vol. 17, no. 1, pp. 60–69.

    Google Scholar 

  12. Kostousova, E.K., On External Polyhedral Estimates on Reachability Sets for Systems with Bilinear Uncertainty, Prikl. Mat. Mekh., 2002, vol. 66, no. 4, pp. 559–571.

    MathSciNet  MATH  Google Scholar 

  13. Vishnyakov, B.V and Kibzun, A.I., Application of the Bootstrap Method for Estimation of the Quantile Function, Autom. Remote Control, 2007, vol. 68, no. 11, pp. 1931–1944.

    Article  MathSciNet  MATH  Google Scholar 

  14. Timofeeva, G.A., Optimal and Suboptimal Solutions to Stochastically Uncertain Problems of Quantile Optimization, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1145–1157.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalbfleisch, J.D. and Lawless, J.F., Least-Squares Estimation of Transition Probabilities From Aggregate Data, Can. J. Stat., 1984, vol. 12(3), pp. 169–182.

    Article  MathSciNet  MATH  Google Scholar 

  16. MacRae, E.Ch., Estimation of Time-Varying Markov Processes with Aggregate Data, Econometrica, 1977, vol. 45(1), pp. 183–198.

    Article  MathSciNet  MATH  Google Scholar 

  17. Anderson, T.W. and Goodman, L.A., Statistical Inference about Markov Chains, Ann. Math. Stat., 1957, vol. 28, pp. 89–110.

    Article  MathSciNet  MATH  Google Scholar 

  18. Venttsel’, E.S. and Ovcharov, A.A., Teoriya sluchainykh protsessov i ee inzhenernye prilozheniya (Theory of Random Processes and Its Engineering Applications), Moscow: Nauka, 1991.

    Google Scholar 

  19. Bellman, R.E., Introduction to Matrix Analysis, New York: McGraw-Hill, 1960. Translated under the title Vvedenie v teoriyu matrits, Moscow: Nauka, 1968.

    MATH  Google Scholar 

  20. Fidler, M., Nedoma, I., Ramik, Ya., Ron, I., et al., Zadachi lineinoi optimizatsii s netochnymi dannymi (Linear Optimization Problems with Imprecise Data), Moscow: NITs Regulyarnaya i Khaoticheskaya Dinamika, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Timofeeva, N.A. Timofeev, 2012, published in Avtomatika i Telemekhanika, 2012, No. 4, pp. 47–65.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeeva, G.A., Timofeev, N.A. Forecasting credit portfolio components with a Markov chain model. Autom Remote Control 73, 637–651 (2012). https://doi.org/10.1134/S0005117912040042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117912040042

Keywords

Navigation