Log in

Comparative Studies of the Characteristics of Two Alkaline Proteases from Haloalkaliphilic bacterium D-15-9 and Oceanobacillus onchorynchii Mi-10-54

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The study describes purification and characterization of two alkaline proteases in comparative manner from haloalkaliphilic bacteria obtained from two different geographical locations. The enzymes from Haloalkaliphilic bacterium D-15-9 (D-15-9) and Oceanobacillus onchorynchii Mi-10-54 (Mi-10-54) purified by ammonium sulfate fractionation and hydrophobic interaction chromatography were characterized for pH, temperature, metal ions and NaCl stability. The apparent molecular weight of the enzymes was 40 and 28 kDa for D-15-9 and Mi-10-54, respectively. Both proteases optimally catalyzed the reactions at 50°C, pH 10.5–10.0 and 0.25–0.5 M NaCl. The Mi-10-54 protease was more thermally stable in comparison to D-15-9 enzyme. While NaCl did not significantly affect the temperature optima of the D-15-9 protease at lower NaCl concentrations, it shifted it from 50 to 80°C in the presence of 3 M NaCl. However, a similar pattern was not evident for the Mi-10-54 protease. On a similar note, there was a shift in the temperature optima from 50 to 60°C in the presence of 10 mM Ca2+ for Mi-10-54 protease, while D-15-9 protease did not display the similar effect. Instead, the D-15-9 protease denatured easily at higher temperatures and Ca2+. Both the enzymes were stable in urea, metal ions, oxidizing and reducing agents and inhibitors. The sensitivity to PMSF suggested that both enzymes were serine proteases. Moderate stability against hydrogen peroxide was also evident for both proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Giménez, M.I., Studdert, C.A., Sánchez, J.J., and De Castro, R.E., Extremophiles, 2000, vol. 4, no. 3, pp. 181–188.

    Article  Google Scholar 

  2. Gerze, A., Omay, D., Guvenilir, Y., Geomicrobiol. J., 2005, vol. 65, no. 1, pp. 40–51.

    Google Scholar 

  3. Kumar, S., Karan, R., Kapoor, S., Singh, S.P., and Khare, S.K., Braz. J. Microbiol., 2012, vol. 43, no. 4, pp. 1595–1603.

    Article  CAS  Google Scholar 

  4. Purohit, M.K. and Singh, S.P., Process Biochem., 2014, vol. 49, no. 1, pp. 61–68.

    Article  CAS  Google Scholar 

  5. Raval, V.H., Rawal, C.M., Pandey, S., Bhatt, H.B., Dahima, B.R. and Singh, S.P., Ann. Microbiol., 2015, vol. 65, no. 1, pp. 371–381.

    Article  CAS  Google Scholar 

  6. Rathore, D.S., Sheikh, M.A., Gohel, S.D., and Singh, S.P., Curr. Microbiol., 2021, vol. 78, no. 4, pp. 1377–1387.

    Article  CAS  Google Scholar 

  7. Rathore, D.S. and Singh, S.P., Folia Microbiol., 2021, vol. 66, no. 3, pp. 303–316.

    Article  CAS  Google Scholar 

  8. Karan, R., Singh, S.P., Kapoor, S., and Khare, S.K., N. Biotechnol., 2011, vol. 28, no. 2, pp. 136–145.

    Article  CAS  Google Scholar 

  9. Rathore, D.S., J. Mar. Biol. Assoc. India, 2019, vol. 61, no. 1, pp. 71–78.

    Article  Google Scholar 

  10. Salwan, R. and Sharma, V., Arch. Microbiol., 2019, vol. 201, no. 7, pp. 863–877.

    Article  CAS  Google Scholar 

  11. Bhatt, H.B., Begum, M.A., Chintalapati, S., Chintalapati, V.R., and Singh, S.P., Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 11, pp. 4435–4442.

    Article  CAS  Google Scholar 

  12. Raval, V.H., Pillai, S., Rawal, C.M., and Singh, S.P., Process Biochem., 2014, vol. 49, no. 6, pp.955–962.

    Article  CAS  Google Scholar 

  13. Sharma, A.K., Kikani, B.A., and Singh, S.P., Geomicrobiol. J., 2021, vol. 38, no. 4, pp. 347–364.

    Article  CAS  Google Scholar 

  14. Ventosa, A., Nieto, J.J., and Oren, A., Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 504–544.

    Article  CAS  Google Scholar 

  15. Horikoshi, K., Microbiol. Mol. Biol. Rev., 1999, vol. 63, no. 4, pp. 735–750.

    Article  CAS  Google Scholar 

  16. Alva, V.A. and Peyton, B.M., Environ. Sci. Technol., 2003, vol. 37, no. 19, pp. 4397–4402.

    Article  CAS  Google Scholar 

  17. Studdert, C.A., Castro, R.E., De Seitz, K.H., and Sánchez, J.J., Arch. Microbiol., 1997, vol. 168, no. 6, pp. 532–535.

    Article  CAS  Google Scholar 

  18. Fujiwara, N.,Yamamoto, K., and Masui, A., J. Ferment. Bioeng., 1991, vol. 72, no. 4, pp. 306–308.

    Article  CAS  Google Scholar 

  19. Mustefa Beyan, S.,Venkatesa Prabhu, S.,Mumecha, T.K., and Gemeda, M.T., Curr. Microbiol., 2021, vol. 78, no. 5, pp. 1823–1834.

    Article  CAS  Google Scholar 

  20. Purohit, M.K. and Singh, S.P., Int. J. Biol. Macromol., 2013, vol. 53, pp. 138–143.

    Article  CAS  Google Scholar 

  21. Pedersen, N.R., Wimmer, R., Matthiesen, R., Pedersen, L.H., and Gessesse, A., Tetrahedron: Asymmetry, 2003, vol. 14, no. 6, pp. 667–673.

    Article  CAS  Google Scholar 

  22. Bennur, T., Kumar, A.R., Zinjarde, S., and Javdekar, V., Elsevier GmbH, 2015, vol. 174, pp. 33–47.

    Google Scholar 

  23. Proteinases and Their Inhibitors, Turk, V. and Vitale, L.J., Eds., Elsevier, 1981, pp. 213–222.

    Google Scholar 

  24. Gessesse, A., Hatti-Kaul, R., Gashe, B.A., and Mattiasson, B.O., Enzyme Microb. Technol., 2003, vol. 32, no. 5, pp. 519–524.

    Article  CAS  Google Scholar 

  25. Thumar, J. and Singh, S.P., J. Chromatogr. B, 2007, vol. 854, nos. 1–2, pp. 198–203.

    Article  CAS  Google Scholar 

  26. Olivera, N., Sequeiros, C., Siñeriz, F. and Breccia, J.D., World J. Microbiol. Biotechnol., 2006, vol. 22, no. 7, pp. 737–743.

    Article  CAS  Google Scholar 

  27. Soliman, A., Int. J. Biotechnol. Wellness Ind., 2013, no. 203, pp. 65–74.

  28. Bhatt, H.B. and Singh, S.P., Front. Microbiol., 2020, vol. 11, p. 941.

    Article  Google Scholar 

  29. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 12, pp. 248–254.

    Article  CAS  Google Scholar 

  30. Sinsuwan, S., Rodtong, S., and Yongsawatdigul, J., Food Chem., 2010, vol. 119, no. 2, pp. 573–579.

    Article  CAS  Google Scholar 

  31. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  Google Scholar 

  32. Kamekura, M. and Seno, Y., Biochem. Cell Biol., 1990, vol. 68, no. 1, pp. 352–359.

  33. Prakash, B., Vidyasagar, M., Madhukumar, M.S., Muralikrishna, G., and Sreeramulu, K., Process Biochem., 2009, vol. 44, no. 2, pp. 210–215.

    Article  CAS  Google Scholar 

  34. Dodia, M.S., Bhimani, H.G., Rawal, C.M., Joshi, R.H., and Singh, S.P., Bioresour. Technol., 2008, vol. 99, no. 14, pp. 6223–6227.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

VHR is grateful for the JRF and SRF Fellowship under the DBT Multi-Institutional Project. The majority of the research work included in this report was carried as part of the DBT Multi-Institutional Project involving Prof. S. K. Khare (IIT Delhi) and Dr. Sanjay Kapoor (University of Delhi South Campus, New Delhi). SPS acknowledges DST-SERB International Travel Fellowships to present his work in Hamburg (Germany), Cape Town (South Africa) and Kyoto (Japan). SPS also acknowledge award of UGC BSR Faculty Fellowship. VHR acknowledges SERB- Young Scientist Award and DST-SERB International Travel Fellowship. Facilities and infrastructure created under UGC-CAS Program, MoES Project and DST-FIST are duly acknowledged.

Availability of data and materials. All data and materials generated are included in this published article with the availability.

Author information

Authors and Affiliations

Authors

Contributions

V.H. Raval has carried out the experiment. D.S. Rathore has framed the manuscript and S.P. Singh has designed the experiment, critical suggestions and examination of manuscript.

Corresponding author

Correspondence to S. P. Singh.

Ethics declarations

Ethical approval. This paper does not involve any human participants and animals performed by any of the authors.

Competing interests. The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raval, V.H., Rathore, D.S. & Singh, S.P. Comparative Studies of the Characteristics of Two Alkaline Proteases from Haloalkaliphilic bacterium D-15-9 and Oceanobacillus onchorynchii Mi-10-54. Appl Biochem Microbiol 58, 551–563 (2022). https://doi.org/10.1134/S0003683822050131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822050131

Keywords:

Navigation