Log in

A Note on Mock Automorphic Forms and the BPS Index

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We discuss mock automorphic forms from the point of view of representation theory, that is, mock automorphic forms obtained from weak harmonic Maaß forms giving rise to nontrivial \((\mathfrak g,K)\)-cohomology. We consider the possibility of replacing the ‘holomorphic’ condition with a “cohomological” one when generalizing to general reductive groups. Such a candidate for replacement allows for growing Fourier coefficients, in contrast to automorphic forms under the Miatello-Wallach conjecture. In the second part, we provide an overview of the connection with BPS black hole counts as a physical motivation for studying mock automorphic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. This is simply to guarantee the existence of a Whittaker model; we expect that this condition can be relaxed.

References

  1. W. Duke, “Almost a century of answering the question: what is a mock theta function?,” Notices Amer. Math. Soc. 61 (11), 1314–1320 (2014).

    Article  MathSciNet  Google Scholar 

  2. K. Ono, “Unearthing the visions of a master: harmonic Maass forms and number theory,” in Current Developments in Mathematics, 2008 (Int. Press, Somerville, MA, 2009), pp. 347–454.

    MathSciNet  MATH  Google Scholar 

  3. A. Folsom, “Perspectives on mock modular forms,” J. Number Theory 176, 500–540 (2017).

    Article  MathSciNet  Google Scholar 

  4. D. Zagier, “Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann),” in Astérisque (326) (2009), Séminaire Bourbaki (2010), Exp. no. 986, vii–viii, Vol. 2007/2008, pp. 143–164.

    MATH  Google Scholar 

  5. J. Bruinier and J. Funke, “On two geometric theta lifts,” Duke Math. J. 125 (1), 45–90 (2004).

    Article  MathSciNet  Google Scholar 

  6. A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular Forms, Preprint: ar**v:1208.4074 (2012).

  7. S. Zwegers, Mock Theta Functions, Ph.D. thesis, Utrecht University (2002).

    MATH  Google Scholar 

  8. K. Bringmann and S. Kudla, “A classification of harmonic Maass forms,” Math. Ann. 370 (3–4), 1729–1758 (2018).

    Article  MathSciNet  Google Scholar 

  9. R. Schulze–Pillot, “Weak Maaß forms and (\(\mathfrak g\),K)-modules,” Ramanujan J 26 (3), 437–445 (2011).

    Article  MathSciNet  Google Scholar 

  10. M. Westerholt–Raum, “Harmonic Weak Siegel Maass Forms,” I. Int. Math. Res. Not., No. 5, 1442–1472 (2018).

    MathSciNet  MATH  Google Scholar 

  11. S. Kudla, M. Rapoport, and T. Yang, Modular Forms and Special Cycles on Shimura Curves, in Annals of Mathematics Studies (Princeton University Press, Princeton, NJ, 2006), Vol. 161.

    Book  Google Scholar 

  12. K.–W. Lan, “Higher Koecher’s principle,” Math. Res. Lett. 23 (1), 163–199 (2016).

    Article  MathSciNet  Google Scholar 

  13. R. Miatello and N. R. Wallach, “Automorphic forms constructed from Whittaker vectors,” J. Funct. Anal. 86 (2), 411–487 (1989).

    Article  MathSciNet  Google Scholar 

  14. S. D. Miller and T. Trinh, “On the nonexistence of automorphic eigenfunctions of exponential growth on \(SL(3,\mathbb Z) \backslash SL(3,\mathbb R)/SO(3,\mathbb R)\),” Res. Number Theory 5 (4), (2019), Paper No. 31.

    Article  MathSciNet  Google Scholar 

  15. S. D. Miller and G. Moore, “Landau–Siegel zeros and black hole entropy,” Asian J. Math. 4 (1), 183–211 (2000).

    Article  MathSciNet  Google Scholar 

  16. J. Buttcane and S. D. Miller, Weights, Raising and Lowering Operators, and K-Types for Automorphic Forms on \(SL (3, \mathbb R)\) , ar**v:1702.08851 (2017).

  17. P. Fleig, H. Gustafsson, A. Kleinschmidt and D. Persson, Eisenstein Series and Automorphic Representations, in Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2018), Vol. 176.

    Book  Google Scholar 

  18. S. Kachru and A. Tripathy, BPS Jum** Loci and Special Cycles, Preprint: ar**v:1703.00455 (2017).

  19. G. Moore, Attractors and Arithmetic, Preprint: ar**v:hep-th/9807056 (1998).

  20. S. Kachru and A. Tripathy, “Black holes and Hurwitz class numbers,” International Journal of Modern Physics D 26.12 (2017).

    MATH  Google Scholar 

  21. D. Zagier, “Nombres de classes et formes modulaires de poids 3/2,” C. R. Acad. Sci. Paris Ser. A-B 281 (21), A883–A886 (1975).

    MathSciNet  MATH  Google Scholar 

  22. N. Benjamin, S. Kachru, K. Ono, and L. Rolen, “Black holes and class groups,” Res. Math. Sci. 5 (4), 22 pp (2018), Paper No. 43.

    Article  MathSciNet  Google Scholar 

  23. D. Maulik and R. Pandharipande, “Gromov–Witten theory and Noether–Lefschetz theory,” in A Celebration of Algebraic Geometry, Clay Math. Proc. (Amer. Math. Soc., Providence, RI, 2013), Vol. 18, pp. 469–507.

    MathSciNet  MATH  Google Scholar 

  24. R. Borcherds, “The Gross–Kohnen–Zagier theorem in higher dimensions,” Duke Math. J. 97 (2), 219–233 (1999).

    Article  MathSciNet  Google Scholar 

  25. S. Kachru and A. Tripathy, “BPS jum** loci are automorphic,” Communications in Mathematical Physics 360 (3), 919–933 (2018).

    Article  MathSciNet  Google Scholar 

  26. F. Hirzebruch and D. Zagier, “Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus,” Invent. Math. 36, 57–113 (1976).

    Article  MathSciNet  Google Scholar 

  27. S. Kudla and J. Millson, “Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables,” Inst. Hautes Études Sci. Publ. Math., No. 71, 121–172 (1990).

    Article  MathSciNet  Google Scholar 

  28. G. Moore, “Physical mathematics and the future,” in Vision Talk (Strings Conference, Princeton USA, 2014).

    Google Scholar 

  29. A. Weil, “Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,” Math. Ann. 168, 149–156 (1967).

    Article  MathSciNet  Google Scholar 

  30. K. Imai, “Generalization of Hecke’s correspondence to Siegel modular forms,” Amer. J. Math. 102 (5), 903–936 (1980).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, T.A. A Note on Mock Automorphic Forms and the BPS Index. Math Notes 110, 273–282 (2021). https://doi.org/10.1134/S0001434621070294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621070294

Keywords

Navigation