Log in

Electron paramagnetic resonance in neutron-transmutation-doped semiconductors with a changed isotopic composition

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Potential applications of electron paramagnetic resonance (EPR) for investigating and controlling the process of neutron transmutation do** (NTD) of semiconducting germanium, silicon, and silicon carbide are discussed. It is shown that EPR enables one to control the process of annealing of radiation-induced defects in semiconductors subject to neutron irradiation and to detect the shallow donors restored in the process of annealing of donor-compensating defects by observing EPR signals from these donors. EPR can be used to separately detect isolated donors and clusters of two, three, and more exchange-bound donor atoms and thereby determine the degree of nonuniformity of the impurity distribution over the crystal. Neutron transmutation do** is demonstrated to produce a fairly uniform arsenic-donor distribution in a germanium crystal. It is argued that semiconductors enriched in the selected isotopes should be used for NTD. The results of an investigation of phosphorus donors in silicon carbide are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Cleland, K. Lakr-Horovitz, and J. C. Pigg, Phys. Rev. 78(6), 814 (1950).

    Article  ADS  Google Scholar 

  2. H. Fritzsche and M. Cuevas, Phys. Rev. 119(4), 1238 (1960).

    Article  ADS  Google Scholar 

  3. Neutron Transmutation Do** in Semiconductors, Ed. by J. M. Meese (Plenum, New York, 1979).

    Google Scholar 

  4. A. A. Berezin, J. Phys. Chem. Solids 50, 5 (1989).

    Google Scholar 

  5. E. E. Haller, Solid State Phenom. 32–33, 11 (1993).

    Google Scholar 

  6. I. Shlimak, A. N. Ionov, R. Rentzsch, and J. M. Lazebnik, Semicond. Sci. Technol. 11, 1826 (1996).

    Article  ADS  Google Scholar 

  7. E. V. Haas and M. S. Schnoller, IEEE Trans. Electron Devices 23, 803 (1976).

    Google Scholar 

  8. Table of Isotopes, 7th ed., Ed. by C. M. Lederer and V. S. Shirley (Wiley, New York, 1978).

    Google Scholar 

  9. A. I. Veinger, A. G. Zabrodskii, G. A. Lomakina, and E. N. Mokhov, Fiz. Tverd. Tela (Leningrad) 28(6), 1659 (1986) [Sov. Phys. Solid State 28, 917 (1986)].

    Google Scholar 

  10. E. N. Kalabukhova, S. N. Lukin, and E. N. Mokhov, Fiz. Tverd. Tela (St. Petersburg) 35(3), 703 (1993) [Phys. Solid State 35, 361 (1993)].

    Google Scholar 

  11. H. Heissenstein, C. Peppermueller, and R. Helbig, J. Appl. Phys. 83(12), 7542 (1998).

    Article  ADS  Google Scholar 

  12. M. A. Capano, J. A. Cooper, Jr., M. R. Melloch, et al., J. Appl. Phys. 87(12), 8773 (2000).

    Article  ADS  Google Scholar 

  13. W. Kohn and J. M. Luttinger, Phys. Rev. 98(4), 915 (1955).

    Article  ADS  Google Scholar 

  14. G. D. Watkins, in Point Defects in Solids, Ed. by J. H. Crowford and L. M. Slifkin (Plenum, New York, 1975), Vol. 2, pp. 333–392; G. D. Watkins, in Deep Centers in Semiconductors, Ed. by S. T. Pantelides (Gordon and Breach, New York, 1986), pp. 147–183.

    Google Scholar 

  15. G. Feher, Phys. Rev. 114(5), 1219 (1959).

    ADS  Google Scholar 

  16. D. K. Wilson, Phys. Rev. A 134(1), 265 (1964).

    ADS  Google Scholar 

  17. H. H. Woodbury and G. W. Ludwig, Phys. Rev. 124(4), 1083 (1961).

    Article  ADS  Google Scholar 

  18. J. L. Ivey and R. L. Mieher, Phys. Rev. B 11(2), 849 (1975).

    ADS  Google Scholar 

  19. A. V. Duijn-Arnold, R. Zondervan, J. Schmidt, et al., Phys. Rev. B 64, 085206 (2001).

    Google Scholar 

  20. F. Leiter, H. Zhou, F. Henecker, et al., Physica B (Amsterdam) 308–310, 908 (2001).

    Google Scholar 

  21. V. S. Weiner, Mater. Sci. Forum 83–87, 297 (1992).

    ADS  Google Scholar 

  22. R. C. Fletcher, W. A. Yager, G. L. Pearson, and F. R. Merritt, Phys. Rev. 95(3), 844 (1954).

    Article  ADS  Google Scholar 

  23. G. Feher, R. C. Fletcher, and E. A. Gere, Phys. Rev. 100(6), 1784 (1955).

    Article  ADS  Google Scholar 

  24. C. P. Slichter, Phys. Rev. 99(2), 479 (1955).

    Article  ADS  Google Scholar 

  25. D. Jerome and J. M. Winter, Phys. Rev. A 134(4), 1001 (1964).

    ADS  Google Scholar 

  26. B. G. Zhurkin and N. A. Penin, Fiz. Tverd. Tela (Leningrad) 6(4), 1141 (1964) [Sov. Phys. Solid State 6, 879 (1964)].

    Google Scholar 

  27. A. I. Veinger, Fiz. Tekh. Poluprovodn. (Leningrad) 1(1), 20 (1967) [Sov. Phys. Semicond. 1, 14 (1967)].

    Google Scholar 

  28. I. M. Zaritskii, L. A. Shul’man, and I. N. Geifman, Fiz. Tverd. Tela (Leningrad) 11(1), 30 (1969) [Sov. Phys. Solid State 11, 22 (1969)].

    Google Scholar 

  29. C. F. Young, K. **e, E. H. Poindexter, et al., Appl. Phys. Lett. 70(14), 1858 (1997).

    Article  ADS  Google Scholar 

  30. V. G. Grachev, Zh. Éksp. Teor. Fiz. 92(5), 1834 (1987) [Sov. Phys. JETP 65, 1029 (1987)].

    Google Scholar 

  31. E. Sonder and H. C. Schweinler, Phys. Rev. 117(5), 1216 (1960).

    Article  ADS  Google Scholar 

  32. S. Greulich-Weber, Phys. Status Solidi A 162(1), 95 (1997).

    ADS  Google Scholar 

  33. P. G. Baranov, I. V. Ilyin, E. N. Mokhov, et al., Phys. Rev. B 66, 165206 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 6, 2003, pp. 984–995.

Original Russian Text Copyright © 2003 by Baranov, Ionov, Il’in, Kop’ev, Mokhov, Khramtsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, P.G., Ionov, A.N., Il’in, I.V. et al. Electron paramagnetic resonance in neutron-transmutation-doped semiconductors with a changed isotopic composition. Phys. Solid State 45, 1030–1041 (2003). https://doi.org/10.1134/1.1583785

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1583785

Keywords

Navigation