Log in

Acoustic emission and thermal expansion of Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependence of the elongation per unit length for Pb(Mg1/3Nb2/3)O3 crystals unannealed after growth and mechanical treatment is investigated in the course of thermocycling. It is revealed that this dependence deviates from linear behavior at temperatures below 350°C. The observed deviation is characteristic of relaxors, is very small in the first cycle, increases with increasing number n of thermocycles, and reaches saturation at n≥3. In the first cycle, a narrow maximum of the acoustic emission activity is observed in the vicinity of 350°C. In the course of thermocycling, the intensity of this maximum decreases and becomes zero at n>3. For (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals, the dependence of the temperature of this acoustic emission maximum on x exhibits a minimum. It is assumed that the phenomena observed are associated with the phase strain hardening due to local phase transitions occurring in compositionally ordered and polar nanoregions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii, V. A. Belov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, A. I. Sokolov, and N. K. Yushin, Physics of Ferroelectric Phenomena (Nauka, Leningrad, 1985).

    Google Scholar 

  2. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Google Scholar 

  3. I. W. Chen, J. Phys. Chem. Solids 61, 197 (2000).

    ADS  Google Scholar 

  4. G. Burns and F. H. Dacol, Solid State Commun. 48, 853 (1983).

    Article  Google Scholar 

  5. E. Prouzet, E. Husson, N. de Mathan, and A. Morell, J. Phys.: Condens. Matter 5, 4889 (1993).

    Article  ADS  Google Scholar 

  6. E. Husson, M. Chubb, and A. Morell, Mater. Res. Bull. 23, 357 (1988).

    Article  Google Scholar 

  7. S. B. Vakhrushev, Author’s Abstract of Doctoral Dissertation (St. Petersburg, 1998).

  8. A. Tkachuk, H. Chen, P. Zschack, and E. Colla, in Fundamental Physics of Ferroelectrics 2000: Aspen Center for Physics Winter Workshop, Ed. by R. E. Cohen (American Inst. of Physics, Melville, 2000); AIP Conf. Proc. 535, 136 (2000).

    Google Scholar 

  9. G. K. Smolenskii, N. K. Yushin, S. I. Smirnov, and S. N. Dorogovtsev, Dokl. Akad. Nauk SSSR 294, 1366 (1987) [Sov. Phys. Dokl. 32, 501 (1987)].

    Google Scholar 

  10. Y. Yan, S. J. Pennycook, Z. Xu, and D. Viehland, Appl. Phys. Lett. 72, 3145 (1998).

    ADS  Google Scholar 

  11. S. Miao, J. Zhu, X. Zhang, and Z.-Y. Cheng, Phys. Rev. B 65, 052101 (2001).

  12. N. N. Krainik, L. A. Markova, V. V. Zhdanova, et al., Ferroelectrics 90, 119 (1989).

    Google Scholar 

  13. A. Fouskova, V. Kohl, N. N. Krainik, and I. E. Mylnikova, Ferroelectrics 34, 119 (1981).

    Google Scholar 

  14. H. Arndt and F. Schmidt, Ferroelectrics 79, 149 (1988).

    Google Scholar 

  15. P. Bonnneau, P. Garnier, C. Calvarin, et al., J. Solid State Chem. 91, 350 (1991).

    ADS  Google Scholar 

  16. O. Bunina, I. Zakharchenko, S. Yemelyanov, et al., Ferroelectrics 157, 299 (1994).

    Google Scholar 

  17. M. Damdekalne, K. Bormanis, L. Chakare, and A. Sternberg, Ferroelectrics 186, 293 (1996).

    Google Scholar 

  18. A. E. Glazounov, J. Zhao, and Q. M. Zhang, in Proceedings of 5th Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, Ed. by R. E. Cohen (American Inst. of Physics, Woodbury, 1998); AIP Conf. Proc. 436, 118 (1998).

    Google Scholar 

  19. V. G. Gavrilyachenko, E. A. Dul’kin, and A. F. Semenchev, Fiz. Tverd. Tela (St. Petersburg) 37, 1229 (1995) [Phys. Solid State 37, 668 (1995)].

    Google Scholar 

  20. E. A. Dul’kin, L. V. Grebenkina, I. V. Pozdnyakova, et al., Pis’ma Zh. Tekh. Fiz. 25(2), 68 (1999) [Tech. Phys. Lett. 25, 70 (1999)].

    Google Scholar 

  21. E. A. Dul’kin, V. G. Gavrilyachenko, and O. E. Fesenko, Fiz. Tverd. Tela (St. Petersburg) 39, 740 (1997) [Phys. Solid State 39, 654 (1997)].

    Google Scholar 

  22. E. A. Dul’kin, I. P. Raevskii, and S. M. Emel’yanov, Fiz. Tverd. Tela (St. Petersburg) 39, 363 (1997) [Phys. Solid State 39, 316 (1997)].

    Google Scholar 

  23. S. M. Emel’yanov, N. P. Protsenko, V. A. Zagoruiko, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 27, 431 (1991).

    Google Scholar 

  24. E. A. Dul’kin, Mater. Res. Innovations 2, 338 (1999).

    Google Scholar 

  25. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, Ferroelectrics 100, 29 (1989).

    Google Scholar 

  26. E. V. Colla, N. K. Yushin, and D. Viehland, J. Appl. Phys. 83, 3298 (1998).

    Article  ADS  Google Scholar 

  27. V. A. Isupov, Phys. Status Solidi A 181, 211 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 1, 2003, pp. 151–155.

Original Russian Text Copyright © 2003 by Dul’kin, Raevski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Emel’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dul’kin, E., Raevskii, I.P. & Emel’yanov, S.M. Acoustic emission and thermal expansion of Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Phys. Solid State 45, 158–162 (2003). https://doi.org/10.1134/1.1537428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1537428

Keywords

Navigation