Log in

Running coupling at low momenta, renormalization schemes, and renormalons

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We propose a method for summing a perturbation-theory asymptotic series that is related to infrared (IR) renormalons in QCD using special renormalization schemes in which the running coupling constant can be integrated over the small momenta. For our method to work, we should consider higher order perturbation-theory corrections to the standard bubble-chain diagrams. High-order corrections allow one to choose a scheme in which the coupling-constant evolution can be smoothly extrapolated to low momenta. In these schemes, the sum of an (extended) IR-renormalon asymptotic series is defined as an integral of the running coupling constant over the IR region. We present explicit examples of renormalization schemes of QCD that can be used to sum IR-renormalon asymptotic series according to our definition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Lipatov, Zh. Éksp. Teor. Fiz. 72, 411 (1977) [Sov. Phys. JETP 45, 216 (1977)].

    MathSciNet  Google Scholar 

  2. A. P. Bukhvostov and L. N. Lipatov, Zh. Éksp. Teor. Fiz. 73, 1658 (1977) [Sov. Phys. JETP 46, 871 (1977)].

    Google Scholar 

  3. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Univ. Press, Oxford, 1996, 3rd ed.).

    Google Scholar 

  4. G. ’t Hooft, in Proceedings of the 15th International School on Subnuclear Physics “The Why’s of Subnuclear Physics,” Erice, Sicily, 1977, Ed. by A. Zichichi (Plenum, New York, 1979), p. 943.

    Google Scholar 

  5. B. Lautrup, Phys. Lett. B 69B, 109 (1977).

    ADS  MathSciNet  Google Scholar 

  6. G. H. Hardy, Divergent Series (Clarendon, Oxford, 1973).

    Google Scholar 

  7. G. Parisi, Phys. Lett. B 76B, 65 (1978); Nucl. Phys. B 150, 163 (1979).

    ADS  MathSciNet  Google Scholar 

  8. A. H. Mueller, Nucl. Phys. B 250, 327 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  9. I. I. Balitsky, Phys. Lett. B 273, 282 (1991).

    ADS  Google Scholar 

  10. V. I. Zakharov, Nucl. Phys. B 385, 452 (1992).

    Article  ADS  Google Scholar 

  11. J. G. Korner, F. Krajewski, and A. A. Pivovarov, Eur. Phys. J. C 12, 461 (2000); 14, 123 (2000).

    ADS  Google Scholar 

  12. K. G. Wilson, Phys. Rev. 179, 1399 (1969).

    Article  ADS  Google Scholar 

  13. F. David, Nucl. Phys. B 209, 433 (1982).

    Article  ADS  Google Scholar 

  14. A. A. Pivovarov, A. N. Tavkhelidze, and V. F. Tokarev, Theor. Math. Phys. 60, 765 (1985).

    Google Scholar 

  15. H. D. Politzer, Nucl. Phys. B 117, 397 (1976).

    Article  ADS  Google Scholar 

  16. A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, Pis’ma Zh. Éksp. Teor. Fiz. 27, 65 (1978) [JETP Lett. 27, 55 (1978)].

    Google Scholar 

  17. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979).

    ADS  Google Scholar 

  18. R. Coquereaux, Phys. Rev. D 23, 2276 (1981).

    ADS  Google Scholar 

  19. S. V. Faleev and P. G. Silvestrov, Nucl. Phys. B 507, 379 (1997).

    Article  ADS  Google Scholar 

  20. I. M. Suslov, Zh. Éksp. Teor. Fiz. 116, 369 (1999) [JETP 89, 197 (1999)].

    Google Scholar 

  21. D. J. Broadhurst and A. G. Grozin, Phys. Rev. D 52, 4082 (1995); M. Beneke and V. Braun, Phys. Lett. B 348, 513 (1995); C. N. Lovett-Turner and C. J. Maxwell, Nucl. Phys. B 452, 188 (1995).

    Article  ADS  Google Scholar 

  22. G. P. Korchemsky and G. Sterman, Nucl. Phys. B 437, 415 (1995).

    Article  ADS  Google Scholar 

  23. L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 95, 773 (1954).

    Google Scholar 

  24. M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).

    ADS  MathSciNet  Google Scholar 

  25. N. N. Bogolyubov and D. V. Shirkov, Dokl. Akad. Nauk SSSR 103, 391 (1955); Nuovo Cimento 3, 845 (1956).

    MathSciNet  Google Scholar 

  26. A. A. Vladimirov, Teor. Mat. Fiz. 43, 210 (1980).

    Google Scholar 

  27. M. Beneke, Phys. Rep. 317, 1 (1999).

    Article  ADS  Google Scholar 

  28. N. V. Krasnikov and A. A. Pivovarov, Mod. Phys. Lett. A 11, 835 (1996); hep-ph/9512213; hep-ph/9607247.

    ADS  Google Scholar 

  29. I. I. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, Phys. Rev. D 50, 2234 (1994).

    Article  ADS  Google Scholar 

  30. A. Hoang et al., Eur. Phys. J. C 3, 1 (2000).

    MATH  Google Scholar 

  31. A. A. Penin and A. A. Pivovarov, Phys. Lett. B 435, 413 (1998); Nucl. Phys. B 549, 217 (1999); hep-ph/9904278.

    ADS  Google Scholar 

  32. P. M. Stevenson, Phys. Rev. D 23, 2916 (1981).

    Article  ADS  Google Scholar 

  33. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).

    Article  ADS  Google Scholar 

  34. A. Dhar and V. Gupta, Phys. Rev. D 29, 2822 (1984).

    Article  ADS  Google Scholar 

  35. A. C. Mattingly and P. M. Stevenson, Phys. Rev. D 49, 437 (1994).

    Article  ADS  Google Scholar 

  36. G. Grunberg, Phys. Lett. B 349, 469 (1995).

    ADS  Google Scholar 

  37. N. V. Krasnikov and A. A. Pivovarov, Phys. Lett. B 116, 168 (1982).

    ADS  Google Scholar 

  38. A. A. Pivovarov, Yad. Fiz. 54, 1214 (1991) [Sov. J. Nucl. Phys. 54, 676 (1991)]; Z. Phys. C 53, 461 (1992); Nuovo Cimento A 105, 813 (1992).

    Google Scholar 

  39. N. V. Krasnikov, Nucl. Phys. B 192, 497 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Grunberg, Phys. Lett. B 90B, 70 (1980).

    ADS  Google Scholar 

  41. A. L. Kataev, N. V. Krasnikov, and A. A. Pivovarov, Phys. Lett. B 107B, 115 (1981); Nucl. Phys. B 198, 508 (1982); 490, 505 (1997).

    ADS  Google Scholar 

  42. A. A. Pivovarov and E. N. Popov, Phys. Lett. B 205, 79 (1988); Yad. Fiz. 49, 1118 (1989) [Sov. J. Nucl. Phys. 49, 693 (1989)].

    ADS  Google Scholar 

  43. J. G. Korner, F. Krajewski and A. A. Pivovarov, hep-ph/0002166.

  44. N. V. Krasnikov, A. A. Pivovarov, and N. N. Tavkhelidze, Pis’ma Zh. Éksp. Teor. Fiz. 36, 272 (1982) [JETP Lett. 36, 333 (1982)]; Z. Phys. C 19, 301 (1983).

    Google Scholar 

  45. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).

    Google Scholar 

  46. N. V. Krasnikov and A. A. Pivovarov, Sov. Phys. J. 25, 55 (1982).

    Article  Google Scholar 

  47. D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).

    Article  ADS  Google Scholar 

  48. A. A. Penin and A. A. Pivovarov, Phys. Lett. B 357, 427 (1995); 367, 342 (1996); 401, 294 (1997); Yad. Fiz. 60, 2239 (1997) [Phys. At. Nucl. 60, 2056 (1997)].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 64, No. 8, 2001, pp. 1576–1583.

Original English Text Copyright © 2001 by Krasnikov, Pivovarov.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnikov, N.V., Pivovarov, A.A. Running coupling at low momenta, renormalization schemes, and renormalons. Phys. Atom. Nuclei 64, 1500–1507 (2001). https://doi.org/10.1134/1.1398943

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1398943

Keywords

Navigation