Log in

Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation

  • PERSPECTIVE
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ultraviolet radiation (UVR) predominantly induces UV-signature mutations, C → T and CC → TT base substitutions at dipyrimidine sites, in the cellular and skin genome. I observed in our in vivo mutation studies of mouse skin that these UVR-specific mutations show a wavelength-dependent variation in their sequence-context preference. The C → T mutation occurs most frequently in the 5′-TCG-3′ sequence regardless of the UVR wavelength, but is recovered more preferentially there as the wavelength increases, resulting in prominent occurrences exclusively in theTCG sequence in the UVA wavelength range, which I will designate as a “UVA signature” in this review. The preference of the UVB-induced C → T mutation for the sequence contexts shows a mixed pattern of UVC- and UVA-induced mutations, and a similar pattern is also observed for natural sunlight, in which UVB is the most genotoxic component. In addition, the CC → TT mutation hardly occurs at UVA1 wavelengths, although it is detected rarely but constantly in the UVC and UVB ranges. This wavelength-dependent variation in the sequence-context preference of the UVR-specific mutations could be explained by two different photochemical mechanisms of cyclobutane pyrimidine dimer (CPD) formation. The UV-signature mutations observed in the UVC and UVB ranges are known to be caused mainly by CPDs produced through the conventional singlet/triplet excitation of pyrimidine bases after the direct absorption of the UVC/UVB photon energy in those bases. On the other hand, a novel photochemical mechanism through the direct absorption of the UVR energy to double-stranded DNA, which is called “collective excitation”, has been proposed for the UVA-induced CPD formation. The UVA photons directly absorbed by DNA produce CPDs with a sequence context preference different from that observed for CPDs caused by the UVC/UVB-mediated singlet/triplet excitation, causing CPD formation preferentially at thymine-containing dipyrimidine sites and probably also preferably at methyl CpG-associated dipyrimidine sites, which include the TCG sequence. In this review, I present a mechanistic consideration on the wavelength-dependent variation of the sequence context preference of the UVR-specific mutations and rationalize the proposition of the UVA-signature mutation, in addition to the UV-signature mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. de Gruijl, H. J. C. M. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. van Weelden, H. Slaper and J. C. van der Leun, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1991, 53, 53–60.

    Google Scholar 

  2. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin and J. Pontén, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. P. Rady, F. Scinicariello, R. F. Wagner Jr. and S. K. Tyring, P53 mutations in basal cell carcinomas, Cancer Res., 1992, 52, 3804–3806.

    CAS  PubMed  Google Scholar 

  4. A. Ziegler, D. J. Leffell, S. Kunala, H. W. Sharma, M. Gailani, J. A. Simon, A. J. Halperin, H. P. Baden, P. E. Shapiro, S. E. Bale and D. E. Brash, Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 4216–4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J.-P. Molès, C. Moyret, B. Guillot, P. Jeanteur, J.-J. Guilhou, C. Theillet and N. Basset-Sèguin, P53 gene mutations in human epithelial skin cancers, Oncogene, 1993, 8, 583–588.

    PubMed  Google Scholar 

  6. S. Kress, C. Sutter, P. T. Strickland, H. Mukhtar, J. Schweizer and M. Schwarz, Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin, Cancer Res., 1992, 52, 6400–6403.

    CAS  PubMed  Google Scholar 

  7. S. Kanjilal, W. E. Pierceall, K. K. Cummings, M. L. Kripke and H. N. Ananthaswamy, High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: evidence for strand bias and tumor heterogeneity, Cancer Res., 1993, 53, 2961–2964.

    CAS  PubMed  Google Scholar 

  8. H. J. van Kranen, F. R. de Gruijl, A. de Vries, Y. Sontag, P. W. Wester, H. C. M. Senden, E. Rozemuller and C. F. van Kreijl, Frequent p53 alterations but low incidence of ras mutations in UV-B- induced skin tumors of hairless mice, Carcinogenesis, 1995, 16, 1141–1147.

    Article  PubMed  Google Scholar 

  9. N. Dumaz, H. J. van Kranen, A. de Vries, R. J. W. Berg, P. W. Wester, C. F. van Kreijl, A. Sarasin, L. Daya-Grosjean and F. R. de Gruijl, The role of UV-B light in skin carcinogenesis through the analysis of p53 mutations in squamous cell carcinomas of hairless mice, Carcinogenesis, 1997, 18, 897–904.

    Article  CAS  PubMed  Google Scholar 

  10. H. J. van Kranen, A. de Laat, J. van de Ven, P. W. Wester, A. de Vries, R. J. W. Berg, C. F. van Kreijl and F. R. de Gruijl, Low incidence of p53 mutations in UVA (365 nm)- induced skin tumors in hairless mice, Cancer Res., 1997, 57, 1238–1240.

    PubMed  Google Scholar 

  11. H. N. Ananthaswamy, A. Fourtanier, R. L. Evans, S. Tison, C. Medaisko, S. E. Ullrich and M. L. Kripke, P53 mutations in hairless SKH-hr1 mouse skin tumors induced by a solar simulator, Photochem. Photobiol., 1998, 67, 227–232.

    Article  CAS  PubMed  Google Scholar 

  12. J. Cadet, S. Mouret, J.-L. Ravanat and T. Douki, Photoinduced damage to cellular DNA: direct and photosensitized reactions, Photochem. Photobiol., 2012, 88, 1048–1065.

    Article  CAS  PubMed  Google Scholar 

  13. T. Douki, The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods, Photochem. Photobiol. Sci., 2013, 12, 1286–1302.

    Article  CAS  PubMed  Google Scholar 

  14. J. Cadet, T. Douki and J.-L. Ravanat, Oxidatively generated damage to cellular DNA by UVB and UVA radiation, Photochem. Photobiol., 2015, 91, 140–155.

    Article  CAS  PubMed  Google Scholar 

  15. C. Kielbassa, L. Roza and B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.

    Article  CAS  PubMed  Google Scholar 

  16. G. P. Pfeifer, Y. You and A. Besaratinia, Mutations induced by ultraviolet light, Mutat. Res., 2005, 571, 19–31.

    Article  CAS  PubMed  Google Scholar 

  17. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel and E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80.

    Article  CAS  Google Scholar 

  18. D. Perdiz, P. Gróf, M. Mezzina, O. Nikaido, E. Moustacchi and E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells, J. Biol. Chem., 2000, 35, 26732–26742.

    Article  Google Scholar 

  19. P. J. Rochette, J.-P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky and E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. Douki, A. Reynaud-Angelin, J. Cadet and E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    Article  CAS  PubMed  Google Scholar 

  21. A. Besaratinia, T. W. Synold, H. Chen, C. Chang, B. **, A. D. Riggs and G. P. Pfeifer, DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10058–10063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi and T. Douki, UVA-induced cyclo butane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.

    Article  CAS  PubMed  Google Scholar 

  24. E. Sage, P.-M. Girard and S. Francesconi, Unravelling UVA-induced mutagenesis, Photochem. Photobiol. Sci., 2012, 11, 74–80.

    Article  CAS  PubMed  Google Scholar 

  25. D. Markovitsi, UV-induced DNA damage: the role of electronic excited states, Photochem. Photobiol., 2016, 92, 45–51.

    Article  CAS  PubMed  Google Scholar 

  26. H. Ikehata, T. Masuda, H. Sakata and T. Ono, Analysis of mutation spectra in UVB-exposed mouse skin epidermis and dermis: frequent occurrence of C T transition at methylated CpG-associated dipyrimidine sites, Environ. Mol. Mutagen., 2003, 41, 280–292.

    Article  CAS  PubMed  Google Scholar 

  27. H. Ikehata, H. Kudo, T. Masuda and T. Ono, UVA induces C T transitions at methyl CpG-associated dipyrimidine sites in mouse skin epidermis more frequently than UVB, Mutagenesis, 2003, 18, 511–519.

    Article  CAS  PubMed  Google Scholar 

  28. H. Ikehata, S. Nakamura, T. Asamura and T. Ono, Mutation spectrum in sunlight-exposed skin epidermis: small but appreciable contribution of oxidative stress-induced mutagenesis, Mutat. Res., 2004, 556, 11–24.

    Article  CAS  PubMed  Google Scholar 

  29. H. Ikehata, K. Kawai, J. Komura, K. Sakatsume, L. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai and T. Ono, UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296.

    Article  CAS  PubMed  Google Scholar 

  30. H. Ikehata, J. Kumagai, T. Ono and A. Morita, Solar-UV-signature mutation prefers TCG to CCG: extrapolative consideration from UVA1-induced mutation spectra in mouse skin, Photochem. Photobiol. Sci., 2013, 12, 1319–1327.

    Article  CAS  PubMed  Google Scholar 

  31. H. Ikehata, T. Mori and M. Yamamoto, In vivo spectrum of UVC-induced mutation in mouse skin epidermis may reflect the cytosine deamination propensity of cyclobutane pyrimidine dimers, Photochem. Photobiol., 2015, 91, 1488–1496.

    Article  CAS  PubMed  Google Scholar 

  32. J. W. Drake, Properties of ultraviolet-induced rII mutants of bacteriophage T4, J. Mol. Biol., 1963, 6, 268–283.

    Article  CAS  Google Scholar 

  33. J. E. LeClerc and N. L. Istock, Specificity of UV mutagenesis in the lac promoter of M13lac hybrid phage DNA, Nature, 1982, 297, 596–598.

    Article  CAS  PubMed  Google Scholar 

  34. R. D. Wood, T. R. Skopek and F. Hutchinson, Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light, J. Mol. Biol., 1984, 173, 273–291.

    Article  CAS  PubMed  Google Scholar 

  35. J. H. Miller, Mutagenic specificity of ultraviolet light, J. Mol. Biol., 1985, 182, 45–68.

    Article  CAS  PubMed  Google Scholar 

  36. R. M. Schaaper, R. L. Dunn and B. W. Glickman, Mechanisms of ultraviolet-induced mutation: mutational spectra in the Escherichia coli lacI gene for a wild-type and an excision-repair deficient strain, J. Mol. Biol., 1987, 198, 187–202.

    Article  CAS  PubMed  Google Scholar 

  37. J. D. Armstrong and B. A. Kunz, Site and strand specificity of UVB mutagenesis in the SUP4-o gene of yeast, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 9005–9009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. A. Kunz and J. D. Armstrong, Differences in the mutational specificities of sunlight and UVB radiation suggest a role for transversion-inducing DNA damage in solar photocarcinogenesis, Mutat. Res., 1998, 422, 77–83.

    Article  CAS  PubMed  Google Scholar 

  39. S. G. Kozmin, Y. I. Pavlov, T. A. Kunkel and E. Sage, Roles of Saccharomyces cerevisiae, DNA polymerases Polq and PolÇ in response to irradiation by simulated sunlight, Nucleic Acids Res., 2003, 31, 4541–4552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Hauser, M. M. Seidman, K. Sidur and K. Dixon, Sequence specificity of point mutations induced during passage of a UV-irradiated shuttle vector plasmid in monkey cells, Mol. Cell. Biol., 1986, 6, 277–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. P. M. Glazer, S. N. Sarkar and W. C. Summers, Detection and analysis of UV-induced mutations in mammalian cell DNA using À phage shuttle vector, Proc. Natl. Acad. Sci. U. S. A., 1986, 83, 1041–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. E. A. Drobetsky, A. J. Grosovsky and B. W. Glickman, The specificity of UV-induced mutations at an endogenous locus in mammalian cells, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 9103–9107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Keyse, F. Amaudruz and R. M. Tyrell, Determination of the spectrum of mutations induced by defined-wavelength solar UVB (313 nm) radiation in mammalian cells by use of a shuttle vector, Mol. Cell. Biol., 1988, 8, 5425–5431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. C. Hsia, J. S. Lebkowski, P. Leong, M. P. Calos and J. H. Miller, Comparison of ultraviolet irradiation-induced mutagenesis of the lacI gene in Escherichia coli and in human 293 cells, J. Mol. Biol., 1989, 205, 103–113.

    Article  CAS  PubMed  Google Scholar 

  45. S. Romac, P. Leong, H. Sockett and F. Hutchinson, DNA base sequence changes induced by ultraviolet light mutagenesis of a gene on a chromosome in Chinese hamster ovary cells, J. Mol. Biol., 1989, 209, 195–204.

    Article  CAS  PubMed  Google Scholar 

  46. E. A. Drobetsky, J. Turcotte and A. Châteauneuf, A role for ultraviolet A in solar mutagenesis, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 2350–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. Robert, B. Muel, A. Benoit, L. Dubertret, A. Sarasin and A. Stary, Cell survival and shuttle vector mutagenesis induced by ultraviolet A and ultraviolet B radiation in a human cell line, J. Invest. Dermatol., 1996, 106, 721–728.

    Article  CAS  PubMed  Google Scholar 

  48. Y. You, C. Li and G. P. Pfeifer, Involvement of 5-methyl-cytosine in sunlight-induced mutagenesis, J. Mol. Biol., 1999, 293, 493–503.

    Article  CAS  PubMed  Google Scholar 

  49. Y. You and G. P. Pfeifer, Similarities in sunlight-induced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis, J. Mol. Biol., 2000, 305, 389–399.

    Article  CAS  Google Scholar 

  50. U. P. Kappes, D. Luo, M. Potter, K. Schulmeister and T. M. Rünger, Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126, 667–675.

    Article  CAS  PubMed  Google Scholar 

  51. A. F. W. Frijhoff, H. Rebel, E. J. Mientjes, M. C. J. M. Kelders, M.-J. S. T. Steenwinkel, R. A. Baan, A. A. van Zeeland and L. Roza, UVB-induced mutagenesis in hairless ÀlacZ-transgenic mice, Environ. Mol. Mutagen., 1997, 29, 136–142.

    Article  CAS  PubMed  Google Scholar 

  52. M. Horiguchi, K. Masumura, H. Ikehata, T. Ono, Y. Kanke, T. Sofuni and T. Nohmi, UVB-induced gpt mutations in the skin of gpt delta transgenic mice, Environ. Mol. Mutagen., 1999, 34, 72–79.

    Article  CAS  PubMed  Google Scholar 

  53. H. Ikehata, Y. Chang, M. Yokoi, M. Yamamoto and F. Hanaoka, Remarkable induction of UV-signature mutations at the 3′-cytosine of dipyrimidine sites except at 5′-TCG-3′ in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice, DNA Repair, 2014, 22, 112–122.

    Article  CAS  PubMed  Google Scholar 

  54. H. Ikehata and T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–125.

    Article  CAS  PubMed  Google Scholar 

  55. A. P. Grollman and M. Moriya, Mutagenesis by 8-oxogua-nine: an enemy within, Trends Genet., 1993, 9, 246–279.

    Article  CAS  PubMed  Google Scholar 

  56. S. Yang, W. Hao, A. Ekuni, Y. Fujiwara, T. Ono, N. Munakata, H. Hayatsu and K. Negishi, Sunlight mutagenesis: changes in mutational specificity during the irradiation of phage M13mp2, Mutat. Res., 1999, 438, 53–62.

    Article  CAS  PubMed  Google Scholar 

  57. K. Kino and H. Sugiyama, UVR-induced G-C to C-G transversions from oxidative DNA damage, Mutat. Res., 2005, 571, 33–42.

    Article  CAS  PubMed  Google Scholar 

  58. A. Besaratinia, S. Kim and G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEB J., 2008, 22, 2379–2392.

    Article  CAS  PubMed  Google Scholar 

  59. A. Besaratinia, S. Kim, S. E. Bates and G. P. Pfeifer, Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5953–5958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. H. Ikehata and T. Ono, Significance of CpG methylation for solar UV-induced mutagenesis and carcinogenesis in skin, Photochem. Photobiol., 2007, 83, 196–204.

    CAS  PubMed  Google Scholar 

  61. S. Premi, S. Wallisch, C. M. Mano, A. B. Weiner, A. Bacchiocchi, K. Wakamatsu, E. J. H. Bechara, R. Halaban, T. Douki and D. E. Brash, Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure, Science, 2015, 347, 842–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. P. Caillet-Fauquet, M. Defais and M. Radman, Molecular mechanism of induced mutagenesis. I, in vivo replication of the single-stranded ultraviolet-irradiated 0X174 phage DNA in irradiated host cells, J. Mol. Biol., 1977, 117, 95–112.

    Article  CAS  PubMed  Google Scholar 

  63. M. P. Carty, J. Hauser, A. S. Levine and K. Dixon, Replication and mutagenesis of UV-damaged DNA templates in human and monkey cell extracts, Mol. Cell. Biol., 1993, 13, 533–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. D. C. Thomas and T. A. Kunkel, Replication of UV-irradiated DNA in human cell extracts - evidence for mutagenic bypass of pyrimidine dimers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 7744–7753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. B. Konze-Thomas, R. M. Hazard, V. M. Maher and J. J. McCormick, Extent of excision repair before DNA synthesis determines the mutagenic but not the lethal effect of UV radiation, Mutat. Res., 1982, 94, 421–434.

    Article  CAS  PubMed  Google Scholar 

  66. R. P. Fuchs, Tolerance of lesions in E. coli: Chronological competition between translesion synthesis and damage avoidance, DNA Repair, 2016, 44, 51–58.

    Article  CAS  PubMed  Google Scholar 

  67. Z. Livneh, I. S. Cohen, T. Paz-Elizur, D. Davidovsky, D. Carmi, U. Swain and N. Mirlas-Neisberg, High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA, DNA Repair, 2016, 44, 59–67.

    Article  CAS  PubMed  Google Scholar 

  68. S. Sharma, C. M. Helchowski and C. E. Canman, The roles of DNA polymerase Z and the Y family DNA polymerases in promoting or preventing genome instability, Mutat. Res., 2013, 743-744, 97–110.

    Article  PubMed  CAS  Google Scholar 

  69. S. D. McCulloch and T. A. Kunkel, The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases, Cell Res., 2008, 18, 148–161.

    Article  CAS  PubMed  Google Scholar 

  70. G. P. Pfeifer and G. P. Holmquist, Mutagenesis in the p53 gene, Biochim. Biophys. Acta, 1997, 1333, M1–M8.

    CAS  PubMed  Google Scholar 

  71. J. Yoon, L. Prakash and S. Prakash, Highly error-free role of DNA polymerase q in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 18219–18224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Q. Song, S. M. Sherrer, Z. Suo and J.-S. Taylor, Preparation of site-specific T = mCG cis-syn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase q, J. Biol. Chem., 2012, 287, 8021–8028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. R. E. Johnson, S. Prakash and L. Prakash, Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, pol q, Science, 1999, 283, 1001–1004.

    Article  CAS  PubMed  Google Scholar 

  74. C. Masutani, M. Araki, A. Yamada, R. Kusumoto, T. Nogimori, T. Maekawa, S. Iwai and F. Hanaoka, Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity, EMBO J., 1999, 18, 3491–3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. C. Masutani, R. Kusumoto, S. Iwai and F. Hanaoka, Mechanisms of accurate translesion synthesis by human DNA polymerase q, EMBOJ., 2000, 19, 3100–3109.

    Article  CAS  Google Scholar 

  76. S. D. McCulloch, {etet al.}, Preferential cis-syn thymine dimer bypass by DNA polymerase q occurs with biased fidelity, Nature, 2004, 428, 97–100.

    Article  CAS  PubMed  Google Scholar 

  77. Y. Barak, O. Cohen-Fix and Z. Livneh, Deamination of cytosine-containing pyrimidine photodimers in UV-irradiated DNA, J. Biol. Chem., 1995, 41, 24174–24179.

    Article  Google Scholar 

  78. W. Peng and B. R. Shaw, Accelerated deamination of cytosine residues in UV-induced cyclobutane pyrimidine dimers leads to CC TT transitions, Biochemistry, 1996, 35, 10172–10181.

    Article  CAS  PubMed  Google Scholar 

  79. Y. Tu, R. Dammann and G. P. Pfeifer, Sequence and timedependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo, J. Mol. Biol., 1998, 284, 297–311.

    Article  CAS  PubMed  Google Scholar 

  80. A. Burger, D. Fix, H. Liu, J. Hay and R. Bockrath, In vivo deamination of cytosine-containing cyclobutane dimers in E. coli: a feasible part of UV-mutagenesis, Mutat. Res., 2003, 522, 145–156.

    Article  CAS  PubMed  Google Scholar 

  81. Y. You, D. Lee, J. Yoon, S. Nakajima, A. Yasui and G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694.

    Article  CAS  PubMed  Google Scholar 

  82. J. Jans, W. Schul, Y.-G. Sert, Y. Rijksen, H. Rebel, A. P. M. Eker, S. Nakajima, H. van Steeg, F. R. de Gruijl, A. Yasui, J. H. J. Hoeijmakers and G. T. J. van der Horst, Powerful skin cancer protection by a CPD-photolyase transgene, Curr. Biol., 2005, 15, 105–115.

    Article  CAS  PubMed  Google Scholar 

  83. A. Stary, P. Kannouche, A. R. Lehmann and A. Sarasin, Role of DNA polymerase q in the UV mutation spectrum in human cells, J. Biol. Chem., 2003, 278, 18767–18775.

    Article  CAS  PubMed  Google Scholar 

  84. J. Choi and G. P. Pfeifer, The role of DNA polymerase q in UV mutational spectra, DNA Repair, 2005, 4, 211–220.

    Article  CAS  PubMed  Google Scholar 

  85. C. A. Dumstorf, A. B. Clark, Q. Lin, G. E. Kissling, T. Yuan, R. Kucherlapati, W. G. McGregor and T. A. Kunkel, Participation of mouse DNA polymerase i in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 18083–18088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Q. Gueranger, A. Stary, S. Aoufouchi, A. Faili, A. Sarasin, C.-A. Reynaud and J.-C. Weill, Role of DNA polymerases q, i and Z in UV resistance and UV-induced mutagenesis in a human cell line, DNA Repair, 2008, 7, 1551–1562.

    Article  CAS  PubMed  Google Scholar 

  87. B. Bridges and R. Woodgate, The two-step model of bacterial UV mutagenesis, Mutat. Res., 1985, 150, 133–139.

    Article  CAS  PubMed  Google Scholar 

  88. B. Bridges, The two-step model for Translesion synthesis: then and now, Mutat. Res., 2001, 485, 61–67.

    Article  CAS  PubMed  Google Scholar 

  89. R. Woodgate, Evolution of the two-step model for UV-mutagenesis, Mutat. Res., 2001, 485, 83–92.

    Article  CAS  PubMed  Google Scholar 

  90. R. E. Johnson, {etet al.}, Eukaryotic polymerase i and Z act sequentially to bypass DNA lesions, Nature, 2000, 406, 1015–1019.

    Article  CAS  PubMed  Google Scholar 

  91. O. Ziv, N. Geacintov, S. Nakajima, A. Yasui and Z. Livneh, DNA polymerase Z cooperates with polymerases k and i in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 11552–11557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. P. E. M. Gibbs, J. McDonald, R. Woodgate and C. W. Lawrence, The relative roles in vivo of Saccharomyces cerevisiae Pol q, Pol Z, Rev1 protein and Pol23 in the bypass and mutation induction of an abasic site, T-T (6-4) photoproduct and T-T cis-syn cyclobutane dimer, Genetics, 2005, 169, 575–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. B. S. Strauss, The ‘A-rule’ of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions?, Bioessays, 1991, 13, 79–84.

    Article  CAS  PubMed  Google Scholar 

  94. J.-S. Taylor, New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions, Mutat. Res., 2002, 510, 55–70.

    Article  CAS  PubMed  Google Scholar 

  95. F. Wang, Y. Saito, T. Shiomi, S. Yamada, T. Ono and H. Ikehata, Mutation spectrum in UVB-exposed skin epidermis of a mildly-affected Xpg-deficient mouse, Environ. Mol. Mutagen., 2006, 47, 107–116.

    Article  CAS  PubMed  Google Scholar 

  96. H. Ikehata, F. Yanase, T. Mori, O. Nikaido, K. Tanaka and T. Ono, Mutation spectrum in UVB-exposed skin epidermis of Xpa-knockout mice: frequent recovery of triplet mutations, Environ. Mol. Mutagen., 2007, 48, 1–13.

    Article  CAS  PubMed  Google Scholar 

  97. H. Ikehata, Y. Saito, F. Yanase, T. Mori, O. Nikaido and T. Ono, Frequent recovery of triplet mutations in UVB-exposed skin epidermis of Xpc-knockout mice, DNA Repair, 2007, 6, 82–93.

    Article  CAS  PubMed  Google Scholar 

  98. H. Ikehata, R. Okuyama, E. Ogawa, S. Nakamura, A. Usami, T. Mori, K. Tanaka, S. Aiba and T. Ono, Influences of p53 deficiency on the apoptotic response, DNA damage removal and mutagenesis in UVB-exposed mouse skin, Mutagenesis, 2010, 25, 397–405.

    Article  CAS  PubMed  Google Scholar 

  99. H. Ikehata, T. Ono, K. Tanaka and T. Todo, A model for triplet mutation formation based on error-prone translesional DNA synthesis opposite UV photolesions, DNA Repair, 2007, 6, 658–668.

    Article  CAS  PubMed  Google Scholar 

  100. R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3363–3366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. F. R. de Gruijl and J. C. van der Leun, Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion, Health Phys., 1994, 67, 319–325.

    Article  PubMed  Google Scholar 

  102. H. Ikehata, S. Higashi, S. Nakamura, Y. Daigaku, Y. Furusawa, Y. Kamei, M. Watanabe, K. Yamamoto, K. Hieda, N. Munakata and T. Ono, Action spectrum analysis of UVR genotoxicity for skin: the border wavelengths between UVA and UVB can bring serious mutation loads to skin, J. Invest. Dermatol., 2013, 133, 1850–1856.

    Article  CAS  PubMed  Google Scholar 

  103. H. Ikehata, N. Munakata and T. Ono, Skin can control solar UVR-induced mutations through the epidermisspecific response of mutation induction suppression, Photochem. Photobiol. Sci., 2013, 12, 2008–2015.

    Article  CAS  PubMed  Google Scholar 

  104. R. M. Tyrrell, Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation, Photochem. Photobiol., 1973, 17, 69–73.

    Article  CAS  PubMed  Google Scholar 

  105. J. Cadet, A. Grand and T. Douki, Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights, Top. Curr. Chem., 2015, 356, 249–275.

    Article  CAS  PubMed  Google Scholar 

  106. Y. Jiang, M. Rabbi, M. Kim, C. Ke, W. Lee, R. L. Clark, R. A. Mieczkowski and P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. P. M. Girard, S. Francesconi, M. Pozzebon, D. Graindorge, P. J. Rochette, R. Drouin and E. Sage, UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes, J. Phys.: Conf. Ser., 2011, 261, 012002.

    Google Scholar 

  108. A. Banyasz, I. Vayá, P. Changenet-Barret, T. Gustavsson, T. Douki and D. Markovitsi, Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA, J. Am. Chem. Soc., 2011, 133, 5163–5165.

    Article  CAS  PubMed  Google Scholar 

  109. D. Markovitsi, UV-induced DNA damage: The role of electronic excited states, Photochem. Photobiol., 2016, 92, 45–51.

    Article  CAS  PubMed  Google Scholar 

  110. A. Banyasz, T. Douki, R. Improta, T. Gustavsson, D. Onidas, I. Vayá, M. Perron and D. Markovitsi, Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: Joint experimental and theoretical study, J. Am. Chem. Soc., 2012, 134, 14834–14845.

    Article  CAS  PubMed  Google Scholar 

  111. R. Improta, Photophysics and photochemistry of thymine deoxy-dinucleotide in water: A PCM/TD-DFT quantum mechanical study, J. Phys. Chem. B, 2012, 116, 14261–14274.

    Article  CAS  PubMed  Google Scholar 

  112. R. Drouin and J.-P. Therrien, UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53, Photochem. Photobiol., 1997, 66, 719–726.

    Article  CAS  PubMed  Google Scholar 

  113. S. Tommasi, M. F. Denissenko and G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases, Cancer Res., 1997, 57, 4727–4730.

    CAS  PubMed  Google Scholar 

  114. P. J. Rochette, S. Lacoste, J.-P. Therrien, N. Bastien, D. E. Brash and R. Drouin, Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA, Mutat. Res., 2009, 665, 7–13.

    Article  CAS  PubMed  Google Scholar 

  115. S. Grünwald and G. P. Pfeifer, Enzymatic DNA methylation, Prog. Clin. Biochem. Med., 1989, 9, 61–103.

    Article  Google Scholar 

  116. S. Tornaletti, D. Rozek and G. P. Pfeifer, The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer, Oncogene, 1993, 8, 2051–2057.

    CAS  PubMed  Google Scholar 

  117. P. Monti, A. Inga, G. Scott, A. Aprile, P. Campomenosi, P. Menichini, L. Ottaggio, S. Viaggi, A. Abbondandolo, P. S. Burns and G. Fronza, 5-methylcytosine at HpaII sites in p53 is not hypermutable after UVC irradiation, Mutat. Res., 1999, 431, 93–103.

    Article  CAS  PubMed  Google Scholar 

  118. V. J. Cannistraro and J.-S. Taylor, Acceleration of 5-methyl-cytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots, J. Mol. Biol., 2009, 392, 1145–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. H. Ikehata, M. Takatsu, Y. Saito and T. Ono, Distribution of spontaneous CpG-associated G:C A:T mutations in the lacZ gene of MutaTM mice: effects of CpG methylation, the sequence context of CpG sites, and severity of mutations on the activity of the lacZ gene product, Environ. Mol. Mutagen., 2000, 36, 301–311.

    Article  CAS  PubMed  Google Scholar 

  120. I. Martinocorena, A. Roshan, M. Gerstung, P. Ellis, P. van Loo, S. McLaren, D. C. Wedge, A. Fullam, L. B. Alexandrov, J. M. Tubio, L. Stebbings, A. Menzies, S. Widda, M. R. Stratton, P. H. Jones and P. J. Campbell, High burden and pervasive positive selection of somatic mutations in normal skin, Science, 2015, 348, 880–886.

    Article  CAS  Google Scholar 

  121. A. Petitjean, E. Mathe, S. Kato, C. Ishioka, S. V. Tavtigian, P. Hainaut and M. Olivier, Impact of mutant p53 functional properties on Tp53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC Tp53 database, Hum. Mutat., 2007, 28, 622–629.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

B. Bell’s help with editing the manuscript is gratefully acknowledged. This study was supported by the JSPS KAKENHI with the grant number JP15H02815 to H. Ikehata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironobu Ikehata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikehata, H. Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation. Photochem Photobiol Sci 17, 1861–1871 (2018). https://doi.org/10.1039/c7pp00360a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00360a

Navigation