Log in

Spectrochemistry and artificial color modulation of Cypridina luminescence: indirect evidence for chemiexcitation of a neutral dioxetanone and emission from a neutral amide

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We demonstrate that the emission energy of the cypridinid oxyluciferin depends strongly on the polarity and, to a lesser extent, on the basicity of the medium. The emission color can be tuned by environment effects from violet to green. We also provide firm evidence that the natural system utilizes the neutral form of the emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Notes and references

  1. O. Shimomura, Bioluminescence: Chemical Principles and Methods, World Scientific, 2006

    Book  Google Scholar 

  2. F. H. Johnson and O. Shimomura, Methods Enzymol., 1978, 57, 331–364

    Article  CAS  Google Scholar 

  3. F. I. Tsuji, Methods Enzymol., 1978, 57, 364–372

    Article  CAS  Google Scholar 

  4. This term was recommended recently for the Vargula luciferin to avoid confusion with the terminology: J. G. Morin, Luminescence, 2011, 26, 1–4.

    Article  Google Scholar 

  5. O. Shimomura, F. H. Johnson and T. Masugi, Science, 1969, 164, 1299–1300.

    Article  CAS  Google Scholar 

  6. C. Wu, K. Kawasaki, S. Ohgiya and Y. Ohmiya, Tetrahedron Lett., 2006, 47, 753–756

    Article  CAS  Google Scholar 

  7. H. Nakamura, M. Aizawa, D. Takeuchi, A. Murai and O. Shimomura, Tetrahedron Lett., 2000, 41, 2185–2188.

    Article  CAS  Google Scholar 

  8. E. M. Thompson, S. Nagata and F. I. Tsuji, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 6567–6571

    Article  CAS  Google Scholar 

  9. Y. Nakajima, K. Kobayashi, K. Yamagishi, T. Enomoto and Y. Ohmiya, Biosci., Biotechnol., Biochem., 2004, 68, 565–570.

    Article  Google Scholar 

  10. F. H. Johnson, O. Shimomura, Y. Saiga, L. C. Gershman, G. T. Reynolds and J. R. Waters, J. Cell. Comp. Physiol., 1962, 60, 85–103

    Article  CAS  Google Scholar 

  11. O. Shimomura and F. H. Johnson, Photochem. Photobiol., 1970, 12, 291–295.

    Article  CAS  Google Scholar 

  12. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya and H. Akiyama, Nat. Photonics, 2007, 2, 44–47.

    Article  Google Scholar 

  13. E. M. Thompson, S. Nagata and F. I. Tsuji, Gene, 1990, 96, 257–262

    Article  CAS  Google Scholar 

  14. S. Inouye, Y. Ohmiya, Y. Toya and F. I. Tsuji, Proc. Natl. Acad. Sci. U. S. A., 1992, 89, 9584–9587

    Article  CAS  Google Scholar 

  15. E. M. Thompson, P. Adenot, F. I. Tsuji, J.-P. Renard, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 1317–1321

    Article  CAS  Google Scholar 

  16. C. Wu, C. Suzuki-Ogoh and Y. Ohmiya, BioTechniques, 2007, 42, 290–291.

    Article  CAS  Google Scholar 

  17. C. Wu, K. Kawasaki, Y. Ogawa, Y. Yoshida, S. Ohgiya and Y. Ohmiya, Anal. Chem., 2007, 79, 1634–1638

    Article  CAS  Google Scholar 

  18. C. Wu, S. Irie, S. Yamamoto and Y. Ohmiya, Luminescence, 2009, 24, 131–133.

    Article  CAS  Google Scholar 

  19. G. Miesenböck and J. E. Rothman, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 3402–3407.

    Article  Google Scholar 

  20. C. Wu, K. Mino, H. Akimoto, M. Kawabata, K. Nakamura, M. Ozaki and Y. Ohmiya, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 15599–15603.

    Article  CAS  Google Scholar 

  21. H. Kondo, T. Igarashi, S. Maki, H. Niwa, H. Ikeda and T. Hirano, Tetrahedron Lett., 2005, 46, 7701–7704.

    Article  CAS  Google Scholar 

  22. Y. Takahashi, H. Kondo, S. Maki, H. Niwa, H. Ikeda and T. Hirano, Tetrahedron Lett., 2006, 47, 6057–6061

    Article  CAS  Google Scholar 

  23. T. Hirano, Y. Takahashi, H. Kondo, S. Maki, S. Kojima, H. Ikeda and H. Niwa, Photochem. Photobiol. Sci., 2008, 7, 197–207.

    Article  CAS  Google Scholar 

  24. F. McCapra and Y. C. Chang, Chem. Commun., 1967, 1011–1012.

    Google Scholar 

  25. T. Goto, Pure Appl. Chem., 1968, 17, 421–442.

    Article  CAS  Google Scholar 

  26. H. Stone, Biochem. Biophys. Res. Commun., 1968, 31, 386–391

    Article  CAS  Google Scholar 

  27. O. Shimomura and F. H. Johnson, Biochem. Biophys. Res. Commun., 1971, 44, 340–346.

    Article  CAS  Google Scholar 

  28. Note that the indole proton is not basic and does not dissociate significantly under the conditions employed in this study.

  29. C. Reichardt, Chem. Rev., 1994, 94, 2319–2358

    Article  CAS  Google Scholar 

  30. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, Germany, 3rd edn, 2003.

    Google Scholar 

  31. The CAM-B3LYP functional M. J. G. Peach, T. Helgaker, P. Salek, T. W. Keal, O. B. Lutnaes, D. J. Tozer and N. C. Handy, Phys. Chem. Chem. Phys., 2006, 8, 558–562), which is advantageous for treatment of charge-transfer systems, was employed for optimization and vibrational analysis of in vacuo models in the S0 state. The relevant portion of the conformational space was screened by optimizing a set of 16 structures—four conformers, obtained by rotation around the exo-C9-N-C fragment of three tautomers of OLnH and of three forms of OLn were optimized (for definition of the prefixes, see the ESI). The excited-state (S1) geometries were optimized and the vertical excitation energies (Tv), fluorescence emission energies (Te) and oscillator strengths (f) were calculated with the time-dependent (TD) CAM-B3LYP method, using the basis set 6-31+G(d,p) for all atoms. The calculations were performed by Gaussian 09 program suite: M. J. Frisch, et al., Gaussian, Inc., Wallingford, CT, 2009 (the complete reference is provided in the ESI).

    Article  CAS  Google Scholar 

  32. A. R. Katritzky and I. J. Ghiviriga, J. Chem. Soc., Perkin Trans., 1995, 2, 1651–1653.

    Article  Google Scholar 

  33. The following scale of emission colors was adopted in this work: violet, 380-450 nm; blue, 450-475 nm; cyan, 475-495 nm; green, 495-570 nm.

  34. We note that these assignments differ from ref. 13 where the emission of the amidate ion in model CL molecules were assigned to bands at 389-401 nm in diglyme/acetate buffer (pH 5.6) and at 467-474 nm in DMSO/base, and the emission of the neutral amide of the same molecules was assigned to bands at 394-491 nm in diglyme/acetate buffer.

  35. This observation confirms that the green emission at 502 nm is not due to irreversible decay (hydrolysis) of the emitter (ref. 3).

  36. A recent theoretical study on 2-acetamido-3-methylpyrazine unraveled differences between the chemiluminescent and fluorescent structures (D. Roca-Sanjuán, M. Delcey, I. Navizet, N. Ferré, Y.-J. Liu and R. Lindh, J. Chem. Theory Comput., 2011, 7, 4060–4069). However, no chemiluminescent structures could be located by the TD DFT method that we employed in this study; nevertheless, such differences might become detectable by performing high-level calculations in the future.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panče Naumov.

Additional information

Electronic supplementary information (ESI) available: Additional experimental details and results of the theoretical calculations. See DOI: 10.1039/c2pp25020a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, P., Wu, C., Liu, YJ. et al. Spectrochemistry and artificial color modulation of Cypridina luminescence: indirect evidence for chemiexcitation of a neutral dioxetanone and emission from a neutral amide. Photochem Photobiol Sci 11, 1151–1155 (2012). https://doi.org/10.1039/c2pp25020a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25020a

Navigation