Log in

Significant correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy

  • Original Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

Prior family and adoption studies have suggested a genetic relationship between schizophrenia and schizotypy. However, this has never been verified using linkage methods. We therefore attempted to test for a correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. The Irish study of high-density schizophrenia families comprises 270 families with at least two members with schizophrenia or poor-outcome schizoaffective disorder (n=637). Non-psychotic relatives were assessed using the structured interview for schizotypy (n=746). A 10-cM multipoint, non-parametric, autosomal genome-wide scan of schizophrenia was performed in Merlin. A scan of a quantitative trait comprising ratings of DSM-III-R criteria for schizotypal personality disorder in non-psychotic relatives was also performed. Schizotypy logarithm of the odds (LOD) scores were regressed onto schizophrenia LOD scores at all loci, with adjustment for spatial autocorrelation. To assess empirical significance, this was also carried out using 1000 null scans of schizotypy. The number of jointly linked loci in the real data was compared to distribution of jointly linked loci in the null scans. No markers were suggestively linked to schizotypy based on strict Lander–Kruglyak criteria. Schizotypy LODs predicted schizophrenia LODs above chance expectation genome wide (empirical P=0.04). Two and four loci yielded nonparametric LOD (NPLs) >1.0 and >0.75, respectively, for both schizophrenia and schizotypy (genome-wide empirical P=0.04 and 0.02, respectively). These results suggest that at least a subset of schizophrenia susceptibility genes also affects schizotypy in non-psychotic relatives. Power may therefore be increased in molecular genetic studies of schizophrenia if they incorporate measures of schizotypy in non-psychotic relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Kendler KS . Diagnostic approaches to schizotypal personality disorder: a historical perspective. Schizophr Bull 1985; 11: 538–553.

    Article  CAS  PubMed  Google Scholar 

  2. Spitzer RL, Endicott J, Gibbon M . Crossing the border into borderline personality and borderline schizophrenia. The development of criteria. Arch Gen Psychiatry 1979; 36: 17–24.

    Article  CAS  PubMed  Google Scholar 

  3. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The roscommon family study. III. Schizophrenia-related personality disorders in relatives. Arch Gen Psychiatry 1993; 50: 781–788.

    Article  CAS  PubMed  Google Scholar 

  4. Kendler KS, Thacker L, Walsh D . Self-report measures of schizotypy as indices of familial vulnerability to schizophrenia. Schizophr Bull 1996; 22: 511–520.

    Article  CAS  PubMed  Google Scholar 

  5. Kendler KS, McGuire M, Gruenberg AM, Walsh D . Schizotypal symptoms and signs in the Roscommon Family Study. Their factor structure and familial relationship with psychotic and affective disorders. Arch Gen Psychiatry 1995; 52: 296–303.

    Article  CAS  PubMed  Google Scholar 

  6. Asarnow RF, Nuechterlein KH, Fogelson D, Subotnik KL, Payne DA, Russell AT et al. Schizophrenia and schizophrenia-spectrum personality disorders in the first-degree relatives of children with schizophrenia: the UCLA family study. Arch Gen Psychiatry 2001; 58: 581–588.

    Article  CAS  PubMed  Google Scholar 

  7. Baron M, Gruen R, Rainer JD, Kane J, Asnis L, Lord S . A family study of schizophrenic and normal control probands: implications for the spectrum concept of schizophrenia. Am J Psychiatry 1985; 142: 447–455.

    Article  CAS  PubMed  Google Scholar 

  8. Kendler KS, Gruenberg AM, Strauss JS . An independent analysis of the Copenhagen sample of the Danish adoption study of schizophrenia. II. The relationship between schizotypal personality disorder and schizophrenia. Arch Gen Psychiatry 1981; 38: 982–984.

    Article  CAS  PubMed  Google Scholar 

  9. Torgersen S . Genetic and nosological aspects of schizotypal and borderline personality disorders. A twin study. Arch Gen Psychiatry 1984; 41: 546–554.

    Article  CAS  PubMed  Google Scholar 

  10. Neale MC, Cardon LR . Methodology for Genetic Studies of Twins and Families. Kluwer Academic: Dordrecht, The Netherlands, 1992.

    Book  Google Scholar 

  11. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

  12. Owen MJ, Williams NM, O'Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  13. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    CAS  PubMed  Google Scholar 

  14. Kendler KS, O'Neill FA, Burke J, Murphy B, Duke F, Straub RE et al. Irish study on high-density schizophrenia families: field methods and power to detect linkage. Am J Med Genet 1996; 67: 179–190.

    Article  CAS  PubMed  Google Scholar 

  15. Spitzer RL, Williams JB, Gibbon J . Structured clinical interview for DSM-III-R patient version. New York State Psychiatric Institute: New York, 1987.

  16. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542–559.

    Article  CAS  PubMed  Google Scholar 

  17. Straub RE, Speer MC, Luo Y, Rojas K, Overhauser J, Ott J et al. A microsatellite genetic linkage map of human chromosome 18. Genomics 1993; 15: 48–56.

    Article  CAS  PubMed  Google Scholar 

  18. Straub RE, Sullivan PF, Ma Y, Myakishev MV, Harris-Kerr C, Wormley B et al. Susceptibility genes for nicotine dependence: a genome scan and followup in an independent sample suggest that regions on chromosomes 2, 4, 10, 16, 17 and 18 merit further study. Mol Psychiatry 1999; 4: 129–144.

    Article  CAS  PubMed  Google Scholar 

  19. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  21. Genin E, Clerget-Darpoux F . Consanguinity and the sib-pair method: an approach using identity by descent between and within individuals. Am J Hum Genet 1996; 59: 1149–1162.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Levinson DF, Holmans P . The effect of linkage disequilibrium on linkage analysis of incomplete pedigrees. BMC Genet 2005; 6 (Suppl 1): S6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sokal RR, Oden NL . Spatial autocorrelation in biology. 1. Methodology. Biol J Linnean Soc 1978; 10: 199–228.

    Article  Google Scholar 

  24. SAS Institute. SAS/STAT Software, version 8. SAS Institute: Cary, NC, 1999.

  25. Littell RC, Milliken GA, Stroup WW, Wolfinger RD . SAS System for Mixed Models. SAS Institute: Cary, NC, 1996.

    Google Scholar 

  26. North BV, Curtis D, Sham PC . A note on calculation of empirical P-values from Monte Carlo procedure. Am J Hum Genet 2003; 72: 498–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 2003; 73: 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Risch N . Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 1990; 46: 229–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  31. Straub RE, MacLean CJ, Martin RB, Ma Y, Myakishev MV, Harris-Kerr C et al. A schizophrenia locus may be located in region 10p15-p11. Am J Med Genet 1998; 81: 296–301.

    Article  CAS  PubMed  Google Scholar 

  32. Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS . Support for a possible schizophrenia vulnerability locus in region 5q22–31 in Irish families. Mol Psychiatry 1997; 2: 148–155.

    Article  CAS  PubMed  Google Scholar 

  33. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 1995; 11: 287–293.

    Article  CAS  PubMed  Google Scholar 

  34. Glatt SJ, Faraone SV, Tsuang MT . Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case–control and family-based studies. Am J Psychiatry 2003; 160: 469–476.

    Article  PubMed  Google Scholar 

  35. Shifman S, Kuypers J, Kokoris M, Yakir B, Darvasi A . Linkage disequilibrium patterns of the human genome across populations. Hum Mol Genet 2003; 12: 771–776.

    Article  CAS  PubMed  Google Scholar 

  36. Avramopoulos D, Stefanis NC, Hantoumi I, Smyrnis N, Evdokimidis I, Stefanis CN . Higher scores of self reported schizotypy in healthy young males carrying the COMT high activity allele. Mol Psychiatry 2002; 7: 706–711.

    Article  CAS  PubMed  Google Scholar 

  37. Lin HF, Liu YL, Liu CM, Hung SI, Hwu HG, Chen WJ . Neuregulin 1 gene and variations in perceptual aberration of schizotypal personality in adolescents. Psychol Med 2005; 35: 1589–1598.

    Article  PubMed  Google Scholar 

  38. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D . A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652–654.

    Article  PubMed  Google Scholar 

  39. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.

    Article  CAS  PubMed  Google Scholar 

  40. Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF et al. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 2003; 54: 40–48.

    Article  CAS  PubMed  Google Scholar 

  41. Baker K, Baldeweg T, Sivagnanasundaram S, Scambler P, Skuse D . COMT Val108/158 Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biol Psychiatry 2005; 58: 23–31.

    Article  CAS  PubMed  Google Scholar 

  42. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    Article  CAS  PubMed  Google Scholar 

  44. Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M, Borrmann M et al. Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis. Mol Psychiatry 1997; 2: 156–160.

    Article  CAS  PubMed  Google Scholar 

  45. Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C et al. Genome-wide scan in Portuguese island families identifies 5q31–5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 2004; 9: 213–218.

    Article  CAS  PubMed  Google Scholar 

  46. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B et al. Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 1988; 336: 164–167.

    Article  CAS  PubMed  Google Scholar 

  47. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Genome scan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    CAS  PubMed  Google Scholar 

  48. Foroud T, Castelluccio PF, Koller DL, Edenberg HJ, Miller M, Bowman E et al. Suggestive evidence of a locus on chromosome 10p using the NIMH genetics initiative bipolar affective disorder pedigrees. Am J Med Genet 2000; 96: 18–23.

    Article  CAS  PubMed  Google Scholar 

  49. Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry 2000; 5: 638–649.

    Article  CAS  PubMed  Google Scholar 

  50. Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K et al. Further evidence for a susceptibility locus on chromosome 10p14-p11 in 72 families with schizophrenia by nonparametric linkage analysis. Am J Med Genet 1998; 81: 302–307.

    Article  CAS  PubMed  Google Scholar 

  51. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European–American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 290–295.

    Article  CAS  PubMed  Google Scholar 

  52. Brzustowicz LM, Honer WG, Chow EW, Hogan J, Hodgkinson K, Bassett AS . Use of a quantitative trait to map a locus associated with severity of positive symptoms in familial schizophrenia to chromosome 6p. Am J Hum Genet 1997; 61: 1388–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    Article  CAS  PubMed  Google Scholar 

  54. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    Article  CAS  PubMed  Google Scholar 

  55. Levi A, Kohn Y, Kanyas K, Amann D, Pae CU, Hamdan A et al. Fine map** of a schizophrenia susceptibility locus at chromosome 6q23: increased evidence for linkage and reduced linkage interval. Eur J Hum Genet 2005; 13: 763–771.

    Article  CAS  PubMed  Google Scholar 

  56. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez M, Goldin LR, Cao Q, Zhang J, Sanders AR, Nancarrow DJ et al. Follow-up study on a susceptibility locus for schizophrenia on chromosome 6q. Am J Med Genet 1999; 88: 337–343.

    Article  CAS  PubMed  Google Scholar 

  58. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH genetics initiative millenium schizophrenia consortium: linkage analysis of African–American pedigrees. Am J Med Genet 1998; 81: 282–289.

    Article  CAS  PubMed  Google Scholar 

  59. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996; 153: 1534–1540.

    Article  CAS  PubMed  Google Scholar 

  60. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  61. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995; 60: 252–260.

    Article  CAS  PubMed  Google Scholar 

  62. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  PubMed  Google Scholar 

  65. Farmer A, Redman K, Harris T, Mahmood A, Sadler S, Pickering A et al. Neuroticism, extraversion, life events and depression. The Cardiff Depression Study. Br J Psychiatry 2002; 181: 118–122.

    Article  PubMed  Google Scholar 

  66. Jardine R, Martin NG, Henderson AS . Genetic covariation between neuroticism and the symptoms of anxiety and depression. Genet Epidemiol 1984; 1: 89–107.

    Article  CAS  PubMed  Google Scholar 

  67. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ . A longitudinal twin study of personality and major depression in women. Arch Gen Psychiatry 1993; 50: 853–862.

    Article  CAS  PubMed  Google Scholar 

  68. Hettema JM, Prescott CA, Kendler KS . Genetic and environmental sources of covariation between generalized anxiety disorder and neuroticism. Am J Psychiatry 2004; 161: 1581–1587.

    Article  PubMed  Google Scholar 

  69. Agrawal A, Jacobson KC, Prescott CA, Kendler KS . A twin study of personality and illicit drug use and abuse/dependence. Twin Res 2004; 7: 72–81.

    Article  PubMed  Google Scholar 

  70. Fullerton J, Cubin M, Tiwari H, Wang C, Bomhra A, Davidson S et al. Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. Am J Hum Genet 2003; 72: 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neale BM, Sullivan PF, Kendler KS . A genome scan of neuroticism in nicotine dependent smokers. Am J Med Genet B Neuropsychiatr Genet 2004; 132B: 65–69.

    Article  Google Scholar 

  72. Nurnberger Jr JI, Foroud T, Flury L, Su J, Meyer ET, Hu K et al. Evidence for a locus on chromosome 1 that influences vulnerability to alcoholism and affective disorder. Am J Psychiatry 2001; 158: 718–724.

    Article  PubMed  Google Scholar 

  73. Abkevich V, Camp NJ, Hensel CH, Neff CD, Russell DL, Hughes DC et al. Predisposition locus for major depression at chromosome 12q22–12q23.2. Am J Hum Genet 2003; 73: 1271–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eaves LJ, Neale MC, Maes H . Multivariate multipoint linkage analysis of quantitative trait loci. Behav Genet 1996; 26: 519–525.

    Article  CAS  PubMed  Google Scholar 

  75. McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 2005; 77: 582–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Middleton FA, Pato MT, Gentile KL, Morley CP, Zhao X, Eisener AF et al. Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genoty** assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am J Hum Genet 2004; 74: 886–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schaid DJ, Guenther JC, Christensen GB, Hebbring S, Rosenow C, Hilker CA et al. Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility loci. Am J Hum Genet 2004; 75: 948–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levinson DF, Levinson MD, Segurado R, Lewis CM . Genome scan meta-analysis of schizophrenia and bipolar disorder, part I: methods and power analysis. Am J Hum Genet 2003; 73: 17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bouzigon E, Dizier MH, Krahenbuhl C, Lemainque A, Annesi-Maesano I, Betard C et al. Clustering patterns of LOD scores for asthma-related phenotypes revealed by a genome-wide screen in 295 French EGEA families. Hum Mol Genet 2004; 13: 3103–3113.

    Article  CAS  PubMed  Google Scholar 

  80. Bacanu SA . Robust estimation of critical values for genome scans to detect linkage. Genet Epidemiol 2005; 28: 24–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants MH-41953, MH-52537, MH-45390, MH-65322, and IT-32 MH-20030. AF was supported by an APA/Lilly Psychiatric Research Fellowship and a NARSAD Young Investigator Award. Data collection was conducted under the supervision of S Humphries, M Healy and A Finnerty. Additional interviews were conducted by J Burke, B Murphy, F Duke, R Shinkwin, M Ni Nuallain, F McMahon, J Downing, T Hebron, B Hanratty, E Crowe, M Doherty, J Bray and L Lowry. This project would not have been possible without the cooperation of the families themselves and the staffs of the many psychiatric hospitals and units in Ireland and northern Ireland and their efforts are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A H Fanous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanous, A., Neale, M., Gardner, C. et al. Significant correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. Mol Psychiatry 12, 958–965 (2007). https://doi.org/10.1038/sj.mp.4001996

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001996

  • Springer Nature Limited

Keywords

This article is cited by

Navigation