Log in

Integrating recent scientific advances to enhance non-sewered sanitation in urban areas

  • Review Article
  • Published:

From Nature Water

View current issue Submit your manuscript

Abstract

Half of the world’s population is now served by non-sewered sanitation, yet the field remains fragmented, with a focus on individual research agendas, and prevalence of imprecise terminology that hinders scientific learnings and leads to misconceptions. The field is at a decisive juncture, with scientific knowledge taking off that holds the potential to fulfil the urgent need for inclusive sanitation in a rapidly urbanizing world. In this critical Review, relevant and diverse research results are assembled with findings translated to one consistent terminology, to provide scientific evidence to draw out interlinkages and learnings, debunk common misconceptions and identify key research needs. Properties of non-sewered wastewater are highly variable, and degradation during storage has a direct impact on greenhouse gas emissions and downstream treatment processes, which facilitate different resource recovery. New technologies and wastewater-based epidemiology can help to address the lack of monitoring. The findings are presented by wastewater properties, biological processes during storage, treatment processes and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Overview of wastewater flows that are produced in non-sewered sanitation.
Fig. 2: Different characteristics of non-sewered and sewer-based wastewater arriving at treatment plants.
Fig. 3: Conceptual model for biological processes occurring during storage of wastewater in containments.
Fig. 4: Landscape illustrating interrelatedness of research covered in this Review.

Similar content being viewed by others

References

  1. Lens, P., Zeeman, G. & Lettinga, G. Decentralised Sanitation and Reuse: Concepts, Systems and Implementation (IWA, 2005).

  2. WHO & UNICEF Progress on Household Drinking Water, Sanitation and Hygiene 2000–2022: Special Focus on Gender (World Health Organization 2023).

  3. Narayan, A. S. et al. Advancements in and integration of water, sanitation, and solid waste for low- and middle-income countries. Annu. Rev. Environ. Resour. 46, 193–219 (2021).

    Article  Google Scholar 

  4. Strande, L. et al. Urban sanitation: new terminology for globally relevant solutions? Environ. Sci. Technol. 57, 15771–15779 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Strande, L., Ronteltap, M. & Brdjanovic, D. Faecal Sludge Management: Systems Approach for Implementation and Operation (IWA, 2014).

  6. Tayler, K. Faecal Sludge and Septage Treatment: A Guide for Low- and Middle-income Countries (Practical Action Publishing, 2018).

  7. Velkushanova, K. et al. (eds) Methods for Faecal Sludge Analysis (IWA, 2021).

  8. Habiyaremye, A. Water innovation in South Africa: map** innovation successes and diffusion constraints. Environ. Sci. Policy 114, 217–229 (2020).

    Article  Google Scholar 

  9. Shyu, H.-Y. et al. The NEWgeneratorTM non-sewered sanitation system: long-term field testing at an informal settlement community in eThekwini municipality, South Africa. J. Environ. Manag. 296, 112921 (2021).

    Article  CAS  Google Scholar 

  10. Sioné, L. et al. Taking tiger worm toilets to scale: opportunities and challenges. Front. Environ. https://doi.org/10.3389/fenvs.2023.1278087 (2023).

  11. Bhagwan, J. N., Pillay, S. & Koné, D. Sanitation game changing: paradigm shift from end-of-pipe to off-grid solutions. Water Pract. Technol. 14, 497–506 (2019).

    Article  Google Scholar 

  12. Martin, T. M. P., Esculier, F., Levavasseur, F. & Houot, S. Human urine-based fertilizers: a review. Crit. Rev. Environ. Sci. Technol. 52, 890–936 (2022).

    Article  CAS  Google Scholar 

  13. Boano, F. et al. A review of nature-based solutions for greywater treatment: applications, hydraulic design, and environmental benefits. Sci. Total Environ. 711, 134731 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Russel, K. C. et al. Taking container-based sanitation to scale: opportunities and challenges. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00190 (2019).

  15. Strande, L. et al. Methods to reliably estimate faecal sludge quantities and qualities for the design of treatment technologies and management solutions. J. Environ. Manag. 223, 898–907 (2018).

    Article  CAS  Google Scholar 

  16. Englund, M. et al. Modelling quantities and qualities (Q&Q) of faecal sludge in Hanoi, Vietnam and Kampala, Uganda for improved management solutions. J. Environ. Manag. 261, 110202 (2020).

    Article  Google Scholar 

  17. Randall, D. G. & Naidoo, V. Urine: the liquid gold of wastewater. J. Environ. Chem. Eng. 6, 2627–2635 (2018).

    Article  CAS  Google Scholar 

  18. Randall, D. G., Krähenbühl, M., Köp**, I., Larsen, T. A. & Udert, K. M. A novel approach for stabilizing fresh urine by calcium hydroxide addition. Water Res. 95, 361–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Demissie, N. et al. Degradation of 75 organic micropollutants in fresh human urine and water by UV advanced oxidation process. Water Res. 242, 120221 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Goldblith, S. A. & Wick, E. L. Analysis of Human Fecal Components and Study of Methods for their Recovery in Space Systems (Aeronautical Systems Division, 1961).

  21. Hardt, P. D. et al. High prevalence of exocrine pancreatic insufficiency in diabetes mellitus: a multicenter study screening fecal elastase 1 concentrations in 1,021 diabetic patients. Pancreatology 3, 395–402 (2003).

    Article  PubMed  Google Scholar 

  22. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gold, M. et al. Biowaste treatment with black soldier fly larvae: increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 102, 319–329 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Chatema, T. M., Mercer, E., Septien, S., Pocock, J. & Buckley, C. A. Effect of ageing on the physicochemical properties of human faeces in the context of onsite sanitation. Environ. Chall. 11, 100717 (2023).

    Article  CAS  Google Scholar 

  26. Sam, S. B., Morgenroth, E. & Strande, L. From feces to fecal sludge: the influence of diet, organic fractions, cations, and stabilization on dewatering performance. J. Water Sanit. Hyg. Dev. https://doi.org/10.2166/washdev.2023.086 (2023).

  27. van Eekert, M. H. A. et al. Anaerobic digestion is the dominant pathway for pit latrine decomposition and is limited by intrinsic factors. Water Sci. Technol. 79, 2242–2250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Penn, R., Ward, B. J., Strande, L. & Maurer, M. Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Res. 132, 222–240 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Silvester, K. R., Bingham, S. A., Pollock, J. R., Cummings, J. H. & O’Neill, I. K. Effect of meat and resistant starch on fecal excretion of apparent N-nitroso compounds and ammonia from the human large bowel. Nutr. Cancer 29, 13–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Reddy, S., Sanders, T. A., Owen, R. W. & Thompson, M. H. Faecal pH, bile acid and sterol concentrations in premenopausal Indian and white vegetarians compared with white omnivores. Br. J. Nutr. 79, 495–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Yudell, M., Roberts, D., DeSalle, R. & Tishkoff, S. Taking race out of human genetics. Science 351, 564–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. de Vries, J., Birkett, A., Hulshof, T., Verbeke, K. & Gibes, K. Effects of cereal, fruit and vegetable fibers on human fecal weight and transit time: a comprehensive review of intervention trials. Nutrients 8, 130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Degen, L. P. & Phillips, S. F. Variability of gastrointestinal transit in healthy women and men. Gut 39, 299–305 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Procházková, N. et al. Advancing human gut microbiota research by considering gut transit time. Gut 72, 180–191 (2023).

    Article  PubMed  Google Scholar 

  35. Storz, M. A., Rizzo, G., Müller, A. & Lombardo, M. Bowel health in U.S. vegetarians: a 4-year data report from the National Health and Nutrition Examination Survey (NHANES). Nutrients 14, 681 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gold, M. et al. Cross-country analysis of faecal sludge dewatering. Environ. Technol. 39, 3077–3087 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Fanyin-Martin, A. et al. Chemical characterization of faecal sludge in the Kumasi metropolis, Ghana. Gates Open Res. 1, 12 (2017).

  38. Adhikari, S., Hunter, E., Vossenberg, Jvd & Thomas, J. A review of latrine front-end characteristics associated with microbial infection risk; reveals a lack of pathogen density data. Int. J. Hyg. Environ. Health 254, 114261 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Capone, D. et al. Analysis of fecal sludges reveals common enteric pathogens in Urban Maputo, Mozambique. Environ. Sci. Technol. Letters 7, 889–895 (2020).

    Article  CAS  Google Scholar 

  40. Andriessen, N. et al. Quantities and qualities of fecal sludge: experiences from field implementation with a Volaser in 7 countries during a pandemic. Front. Water https://doi.org/10.3389/frwa.2023.1130081 (2023).

  41. Strande, L. et al. Estimating quantities and qualities (Q&Q) of faecal sludge at community to city‐wide scales. In Methods for Faecal Sludge Analysis (eds Velkushanova, K. et al.) 115–144 (IWA, 2021).

  42. Ward, B. J. et al. Predictive models using ‘cheap and easy’ field measurements: can they fill a gap in planning, monitoring, and implementing fecal sludge management solutions? Water Res. 196, 116997 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Karapanagioti, H. K. in Encyclopedia of Food and Health (eds Caballero, B. et al.) 453–457 (Academic Press, 2016).

  44. Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R. & Burton, F. L. Metcalf & Eddy Wastewater Engineering: Treatment and Resource Recovery 5th edn (McGraw-Hill, 2014).

  45. Khachan, M. M. & Bhatia, S. K. The efficacy and use of small centrifuge for evaluating geotextile tube dewatering performance. Geotext. Geomembr. 45, 280–293 (2017).

    Article  Google Scholar 

  46. Ward, B. J. et al. Particle size as a driver of dewatering performance and its relationship to stabilization in fecal sludge. J. Environ. Manag. 326, 116801 (2023).

    Article  CAS  Google Scholar 

  47. Prasad, P. et al. Methods for estimating quantities and qualities (Q&Q) of faecal sludge: field evaluation in Sircilla, India. J. Water Sanit. Hyg. Dev. 11, 494–504 (2021).

    Article  Google Scholar 

  48. Ward, B. J. et al. Evaluation of conceptual model and predictors of faecal sludge dewatering performance in Senegal and Tanzania. Water Res. 167, 115101 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Krueger, B. C., Fowler, G. D., Templeton, M. R. & Septien, S. Faecal sludge pyrolysis: understanding the relationships between organic composition and thermal decomposition. J. Environ. Manag. 298, 113456 (2021).

    Article  CAS  Google Scholar 

  50. Isunju, J. B. et al. Financing of sanitation services in the slums of Kampala and Dar es Salaam. Health 5, 783–791 (2013).

    Article  Google Scholar 

  51. Eliyan, C. et al. Generation and management of faecal sludge quantities and potential for resource recovery in Phnom Penh, Cambodia. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.869009 (2022).

  52. Wanda, C. et al. Quantification and characterisation of faecal sludge from on-site sanitation systems prior the design of a treatment plant in Bangangte, West Region of Cameroon. Environ. Chall. 5, 100236 (2021).

    Article  CAS  Google Scholar 

  53. Junglen, K. et al. Characterization and prediction of fecal sludge parameters and settling behavior in informal settlements in Nairobi, Kenya. Sustainability 12, 9040 (2020).

    Article  Google Scholar 

  54. Crous, P., Haarhoff, J. & Buckley, C. A. Water demand characteristics of shared water and sanitation facilities: experiences from community ablution blocks in eThekwini Municipality, South Africa. Water SA 39, 361–368 (2013).

    Google Scholar 

  55. Ahmed, I., Ofori-Amanfo, D., Awuah, E. & Cobbold, F. A comprehensive study on the physicochemical characteristics of faecal sludge in Greater Accra Region and analysis of its potential use as feedstock for green energy. J. Renew. Energy 2019, 8696058 (2019).

    Google Scholar 

  56. Sam, S. B., Ward, B. J., Niederdorfer, R., Morgenroth, E. & Strande, L. Elucidating the role of extracellular polymeric substances (EPS) in dewaterability of fecal sludge from onsite sanitation systems, and changes during anaerobic storage. Water Res. 222, 118915 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Bakare, B., Foxon, K., Brouckaert, C. & Buckley, C. Variation in VIP latrine sludge contents. Water SA 38, 479–486 (2012).

    Article  CAS  Google Scholar 

  58. Byrne, A., Sindall, R., Wang, L., de los Reyes, F. L. & Buckley, C. A. What happens inside a pour-flush pit? Insights from comprehensive characterization. In 40th WEDC International Conference (WEDC, 2017).

  59. Awere, E., Appiah Obeng, P., Asirifua Obeng, P. & Bonoli, A. Characterization of faecal sludge from pit latrines to guide management solutions in Cape Coast, Ghana. J. Geogr. Environ. Earth Sci. Int. 24, 1–13 (2020).

    Google Scholar 

  60. Moonkawin, J. et al. Challenges to accurate estimation of methane emission from septic tanks with long emptying intervals. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.3c05724 (2023).

  61. Kinyua, M. & Stuart, K. Comparison of metabolic kinetics during high and low solids anaerobic digestion of fecal sludge. Biotechnol. Bioeng. 119, 1164–1170 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Maqbool, N., Sam, S. B., Khan, S. J. & Strande, L. Relation of organic fractions in fresh and stored fecal sludge and foodwaste to biogas production. J. Water Sanit. Hyg. Dev. https://doi.org/10.2166/washdev.2024.319 (2024).

  63. Naphtali, J. et al. Comparative metagenomics of anaerobic digester communities reveals sulfidogenic and methanogenic microbial subgroups in conventional and plug flow residential septic tank systems. Processes 10, 436 (2022).

    Article  CAS  Google Scholar 

  64. Smith, S. K. et al. Microbial community function and bacterial pathogen composition in pit latrines in peri-urban Malawi. PLoS Water 2, e0000171 (2023).

    Article  Google Scholar 

  65. Beukes, L. S. Pit Latrines in Peri-urban South African Community: A Hygiene Challenge and a Health Risk Owing to Current Desludging Practices and Biofilm-forming, Multi-drug Resistant Bacteria (Univ. KwaZulu-Natal, 2019).

  66. Ijaz, U. Z. et al. Analysis of pit latrine microbiota reveals depth-related variation in composition, and key parameters and taxa associated with latrine fill-up rate. Front. Microbiol. 13, 960747 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Torondel, B. et al. Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microb. Biotechnol. 9, 209–223 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Connelly, S. et al. Solar septic tank: next generation sequencing reveals effluent microbial community composition as a useful index of system performance. Water 11, 2660 (2019).

    Article  CAS  Google Scholar 

  69. Shaw, K., Kennedy, C. & Dorea, C. C. Non-sewered sanitation systems’ global greenhouse gas emissions: balancing sustainable development goal tradeoffs to end open defecation. Sustainability 13, 11884 (2021).

    Article  CAS  Google Scholar 

  70. Bourgault, C. Characterization and Quantification of Faecal Sludge from Pit Latrines. PhD thesis, Univ. Laval (2019).

  71. Nakagiri, A. et al. Assessing ambient and internal environmental conditions of pit latrines in urban slums of Kampala, Uganda: effect on performance. J. Water Sanit. Hyg. Dev. 7, 92–101 (2017).

    Article  Google Scholar 

  72. Shaw, K. & Dorea, C. C. Biodegradation mechanisms and functional microbiology in conventional septic tanks: a systematic review and meta-analysis. Environ. Sci. Water Res. Technol. 7, 144–155 (2021).

    Article  CAS  Google Scholar 

  73. Huynh, L. T. et al. Greenhouse gas emissions from blackwater septic systems. Environ. Sci. Technol. 55, 1209–1217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 10, 1147–1156 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Polz, M. F. & Cordero, O. X. Bacterial evolution: genomics of metabolic trade-offs. Nat. Microbiol. 1, 16181 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Vazquez, C. M. L. et al. Towards city‐wide inclusive sanitation (CWIS) modelling: modelling of faecal sludge containment/treatment processes. In Methods for Faecal Sludge Analysis (eds Velkushanova, K. et al.) Ch. 6, 145–194 (IWA, 2021).

  77. Jenkins, D. & Wanner, J. Activated Sludge—100 Years and Counting (IWA, 2014).

  78. Noll, M., Matthies, D., Frenzel, P., Derakshani, M. & Liesack, W. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ. Microbiol. 7, 382–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Campbell, E. E. & Paustian, K. Current developments in soil organic matter modeling and the expansion of model applications: a review. Environ. Res. Lett. 10, 123004 (2015).

    Article  Google Scholar 

  80. Kelleher, B. P. & Simpson, A. J. Humic substances in soils: are they really chemically distinct? Environ. Sci. Technol. 40, 4605–4611 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    Article  CAS  Google Scholar 

  82. Angelidaki, I. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Levira, B. et al. Decentralised treatment solutions for on-site faecal sludge: quantifying the removal efficiencies of two novel systems in an East African city. Environ. Sci. Water Res. Technol. 9, 603–619 (2023).

    Article  CAS  Google Scholar 

  84. Cui, H. et al. Chemical pretreatments and anaerobic digestion shape the virome and functional microbiome in fecal sludge. Environ. Sci. Technol. 57, 6008–6020 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Larsen, T. A., Riechmann, M. E. & Udert, K. M. State of the art of urine treatment technologies: a critical review. Water Res. X 13, 100114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bischel, H. N. et al. Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa. Water Res. 85, 57–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Zhong, L. et al. Co-composting of faecal sludge and carbon-rich wastes in the earthworm’s synergistic cooperation system: performance, global warming potential and key microbiome. Sci. Total Environ. 857, 159311 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Reynaert, E., Hess, A. & Morgenroth, E. Making waves: why water reuse frameworks need to co-evolve with emerging small-scale technologies. Water Res. X 11, 100094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cofie, O. O. et al. Solid–liquid separation of faecal sludge using drying beds in Ghana: implications for nutrient recycling in urban agriculture. Water Res. 40, 75–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Guidelines on Sanitation and Health (World Health Organization, 2018).

  91. Seck, A. et al. Faecal sludge drying beds: increasing drying rates for fuel resource recovery in sub-Saharan Africa. J. Water Sanit. Hyg. Dev. 5, 72–80 (2014).

    Article  Google Scholar 

  92. Osei, A. R., Konate, Y. & Abagale, F. K. Pollutant removal and growth dynamics of macrophyte species for faecal sludge treatment with constructed wetland technology. Water Sci. Technol. 80, 1145–1154 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Skinner, S. J. et al. Quantification of wastewater sludge dewatering. Water Res. 82, 2–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Mercer, E., Usher, S. P., McAdam, E. J., Stoner, B. & Bajón-Fernández, Y. On the compressional rheology of fresh faeces: evidence for improving community scale sanitation through localised dewatering. Water Res. 204, 117526 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Mercer, E., Usher, S. P., McAdam, E. J., Stoner, B. & Bajón-Fernández, Y. Rheological characterisation of synthetic and fresh faeces to inform on solids management strategies for non-sewered sanitation systems. J. Environ. Manag. 300, 113730 (2021).

    Article  CAS  Google Scholar 

  96. Song, J. et al. Conditioning fecal sludge of public toilets with coupled zero-valent iron and persulfate: efficiency and mechanism. J. Hazard. Mater. 455, 131615 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Krueger, B. C., Fowler, G. D. & Templeton, M. R. Critical analytical parameters for faecal sludge characterisation informing the application of thermal treatment processes. J. Environ. Manag. 280, 111658 (2021).

    Article  Google Scholar 

  98. Higgins, M. J. & Novak, J. T. The effect of cations on the settling and dewatering of activated sludges: laboratory results. Water Environ. Res. 69, 215–224 (1997).

    Article  CAS  Google Scholar 

  99. Gold, M. et al. Locally produced natural conditioners for dewatering of faecal sludge. Environ. Technol. 37, 2802–2814 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kocbek, E. et al. Novel semi-decentralised mobile system for the sanitization and dehydration of septic sludge: a pilot-scale evaluation in the Jordan Valley. Environ. Sci. Pollut. Res. 29, 42016–42036 (2022).

    Article  CAS  Google Scholar 

  101. Mishuk, M. H., Islam, S. M. T. & Alamgir, M. Comparison of the efficiency of Deebag and jute made bag for faecal sludge management and wastewater treatment. PLoS ONE 15, e0241046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ahmed, I. et al. Development, characterisation, and performance evaluation of some indigenous plants for faecal sludge treatment in Ghana. Int. J. Polym. Sci. 2023, 7470378 (2023).

    Article  Google Scholar 

  103. Mmasi, D. B. Suitability of treated FS using Jatropha curcas on unplanted sand drying beds for agricultural use in Dar es Salaam, Tanzania. Water Pract. Technol. 17, 2639–2653 (2022).

    Article  Google Scholar 

  104. Shaw, K. et al. Towards globally relevant, small-footprint dewatering solutions: optimal conditioner dose for highly variable blackwater from non-sewered sanitation. J. Environ. Manag. 321, 115961 (2022).

    Article  CAS  Google Scholar 

  105. Semiyaga, S., Okure, M. A. E., Niwagaba, C. B., Nyenje, P. M. & Kansiime, F. Dewaterability of faecal sludge and its implications on faecal sludge management in urban slums. Int. J. Environ. Sci. Technol. 14, 151–164 (2017).

    Article  Google Scholar 

  106. Kuffour, A. R. et al. Effect of using different particle sizes of sand as filter media for dewatering faecal sludge. Desalination 248, 308–314 (2009).

    Article  CAS  Google Scholar 

  107. Kuffour, A. R., Awuah, E., Sarpong, D., Anyemedu, F. O. K. & Koné, D. Effects of different solid loading rates of faecal sludge on the dewatering performance of unplanted filter bed. Civ. Environ. Res. 3, 39–48 (2013).

    Google Scholar 

  108. Jørgensen, M. K. et al. Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Res. 120, 117–132 (2017).

    Article  PubMed  Google Scholar 

  109. Narayana, D. Co-Treatment of Septage and Fecal Sludge in Sewage Treatment Facilities (IWA, 2020).

  110. Choubert, J. M. et al. Rethinking wastewater characterisation methods for activated sludge systems—a position paper. Water Sci. Technol. 67, 2363–2373 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Hocaoglu, S. M. & Orhon, D. Particle size distribution analysis of chemical oxygen demand fractions with different biodegradation characteristics in black water and gray water. Clean Soil Air Water 41, 1044–1051 (2013).

    Article  CAS  Google Scholar 

  112. Murat Hocaoglu, S., Insel, G., Ubay Cokgor, E., Baban, A. & Orhon, D. COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions. J. Chem. Technol. Biotechnol. 85, 1241–1249 (2010).

    Article  CAS  Google Scholar 

  113. Okutman, D., Övez, S. & Orhon, D. Hydrolysis of settleable substrate in domestic sewage. Biotechnol. Lett 23, 1907–1914 (2001).

    Article  CAS  Google Scholar 

  114. Vijayan, V., Chakravarthy, S. K., Tyagi, M., Senger, A. S. & Gopinath, A. Evaluation of FSTPs and STP Co-Treatment System Across India (Center for Science and Environment, 2023).

  115. Manga, M., Muoghalu, C. C. & Acheng, P. O. Inactivation of faecal pathogens during faecal sludge composting: a systematic review. Environ. Technol. Rev. 12, 150–174 (2023).

    Article  Google Scholar 

  116. Nartey, E. G., Sakrabani, R., Tyrrel, S. & Cofie, O. Assessing consistency in the aerobic co-composting of faecal sludge and food waste in a municipality in Ghana. Environ. Syst. Res. 12, 33 (2023).

    Article  Google Scholar 

  117. Allen, K., Rodríguez López, E. L., Banwart, S. A. & Evans, B. A systematic review of the effects of fecal sludge derived amendments on crop growth and soil health. ACS ES&T Eng. 3, 746–761 (2023).

    Article  CAS  Google Scholar 

  118. Harrison, J. & Wilson, D. Towards sustainable pit latrine management through LaDePa. Sustain. Sanit. Pract. 13, 25–32 (2012).

    Google Scholar 

  119. Krueger, B. C., Fowler, G. D., Templeton, M. R. & Moya, B. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste. Water Res. 169, 115253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Andriessen, N., Ward, B. J. & Strande, L. To char or not to char? Review of technologies to produce solid fuels for resource recovery from faecal sludge. J. Water Sanit. Hyg. Dev. 9, 210–224 (2019).

    Article  Google Scholar 

  121. Getahun, S. et al. Drying characteristics of faecal sludge from different on-site sanitation facilities. J. Environ. Manag. 261, 110267 (2020).

    Article  CAS  Google Scholar 

  122. Pocock, J., Septien, S., Makununika, B. S. N., Velkushanova, K. V. & Buckley, C. A. Convective drying kinetics of faecal sludge from VIP latrines. Heliyon 8, e09221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Seodigeng, R., Kabuba, J. & Rutto, H. Modelling the drying characteristics of human faeces using thin-layer drying models and calculation of mass transfer properties at ambient conditions. Environ. Chall. 9, 100648 (2022).

    Article  Google Scholar 

  124. Bleuler, M., Gold, M., Strande, L. & Schönborn, A. Pyrolysis of dry toilet substrate as a means of nutrient recycling in agricultural systems: potential risks and benefits. Waste Biomass Valor. 12, 4171–4183 (2021).

    Article  CAS  Google Scholar 

  125. Kizito, S. et al. Biofuel characteristics of non-charred briquettes from dried fecal sludge blended with food market waste: suggesting a waste-to-biofuel enterprise as a win–win strategy to solve energy and sanitation problems in slums settlements. Waste Manag. 140, 173–182 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Ganesa Pillai, M. et al. An experimental study probing moisture kinetics and indices of microwave dried fecal sludge with an insight on real world applications. Sep. Sci. Technol. 57, 2227–2241 (2022).

    Article  CAS  Google Scholar 

  127. Somorin, T. et al. Pyrolysis characteristics and kinetics of human faeces, simulant faeces and wood biomass by thermogravimetry–gas chromatography–mass spectrometry methods. Energy Rep. 6, 3230–3239 (2020).

    Article  Google Scholar 

  128. Bittencourt, F. L. F., Martins, M. F., Orlando, M. T. D. & Galvão, E. S. The proof-of-concept of a novel feces destroyer latrine. J. Environ. Chem. Eng. 10, 106827 (2022).

    Article  CAS  Google Scholar 

  129. Anastasopoulou, A. et al. Probabilistic life cycle assessment of the nano membrane toilet. Int. J. Energy Environ. Eng. 12, 279–283 (2018).

    Google Scholar 

  130. Affolter, J., Brunner, T., Hagger, N. & Vogel, F. A prototype system for the hydrothermal oxidation of feces. Water Res. X 17, 100160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cid, C. A., Qu, Y. & Hoffmann, M. R. Design and preliminary implementation of onsite electrochemical wastewater treatment and recycling toilets for the develo** world. Environ. Sci. Water Res. Technol. 4, 1439–1450 (2018).

    Article  CAS  Google Scholar 

  132. Davey, C. J. et al. Membrane distillation for concentrated blackwater: influence of configuration (air gap, direct contact, vacuum) on selectivity and water productivity. Sep. Purif. Technol. 263, 118390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sahondo, T. et al. Field testing of a household-scale onsite blackwater treatment system in South Africa. Sci. Total Environ. 703, 135469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Varigala, S. K. et al. Field testing of an onsite sanitation system on apartment building blackwater using biological treatment and electrochemical disinfection. Environ. Sci. Water Res. Technol. 6, 1400–1411 (2020).

    Article  CAS  Google Scholar 

  135. Gaulke, L. S. On-site wastewater treatment and reuses in Japan. Proc. Inst. Civ. Eng. Water Manag. 159, 103–109 (2006).

    Article  Google Scholar 

  136. Capone, D. et al. Impact of sampling depth on pathogen detection in pit latrines. PLoS Negl.Trop. Dis. 15, e0009176 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Vijayan, V., Mallik, M. & Chakravarthy, S. K. Performance Evaluation: How Faecal Sludge Treatment Plants are Performing (Centre for Science and Environment, 2020).

  138. Davis, A., Javernick-Will, A. & Cook, S. M. The use of qualitative comparative analysis to identify pathways to successful and failed sanitation systems. Sci. Total Environ. 663, 507–517 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Vermeulen, L. C. et al. Cryptosporidium concentrations in rivers worldwide. Water Res. 149, 202–214 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Raj, S. J. et al. The SaniPath Exposure Assessment Tool: a quantitative approach for assessing exposure to fecal contamination through multiple pathways in low resource urban settlements. PLoS ONE 15, e0234364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Okaali, D. A. et al. Tools for a comprehensive assessment of public health risks associated with limited sanitation services provision. Environ. Plann. B 49, 2091–2111 (2022).

    Google Scholar 

  142. Singer, A. C. et al. A world of wastewater-based epidemiology. Nat. Water 1, 408–415 (2023).

    Article  Google Scholar 

  143. Berendes, D. M. et al. Variation in E. coli concentrations in open drains across neighborhoods in Accra, Ghana: the influence of onsite sanitation coverage and interconnectedness of urban environments. Int. J. Hyg. Environ. Health 224, 113433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nelson, B. What poo tells us: wastewater surveillance comes of age amid COVID, monkeypox, and polio. Br. Med. J. 378, o1869 (2022).

    Article  Google Scholar 

  145. Jakariya, M. et al. Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in develo** countries with onsite sanitation facilities. Environ. Pollut. 311, 119679 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wannigama, D. L. et al. COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. iScience 26, 107019 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ikhimiukor, O. O., Odih, E. E., Donado-Godoy, P. & Okeke, I. N. A bottom-up view of antimicrobial resistance transmission in develo** countries. Nat. Microbiol. 7, 757–765 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Bechtold, P. et al. Rapid identification of SARS-CoV-2 variants of concern using a portable peakPCR platform. Anal. Chem. 93, 16350–16359 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Lambiasi, L., Ddiba, D., Andersson, K., Parvage, M. & Dickin, S. Greenhouse gas emissions from sanitation and wastewater management systems: a review. J. Water Clim. Change https://doi.org/10.2166/wcc.2024.603 (2024).

  150. McNicol, G., Jeliazovski, J., Francois, J. J., Kramer, S. & Ryals, R. Climate change mitigation potential in sanitation via off-site composting of human waste. Nat. Clim. Change 10, 545–54 (2020).

    Article  CAS  Google Scholar 

  151. Johnson, J. et al. Whole-system analysis reveals high greenhouse-gas emissions from citywide sanitation in Kampala, Uganda. Commun. Earth Environ. 3, 80 (2022).

    Article  Google Scholar 

  152. Knappe, J., Somlai, C. & Gill, L. W. Assessing the spatial and temporal variability of greenhouse gas emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement. Biogeosciences 19, 1067–1085 (2022).

    Article  CAS  Google Scholar 

  153. Gambrill, M., Gilsdorf, R. J. & Kotwal, N. Citywide inclusive sanitation—business as unusual: shifting the paradigm by shifting minds. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00201 (2020).

  154. Mattos, K. J. et al. Reaching those left behind: knowledge gaps, challenges, and approaches to achieving SDG 6 in high-income countries. J. Water Sanit. Hyg. Dev. 11, 849–858 (2021).

    Article  Google Scholar 

  155. Hyde-Smith, L., Zhan, Z., Roelich, K., Mdee, A. & Evans, B. Climate change impacts on urban sanitation: a systematic review and failure mode analysis. Environ. Sci. Technol. 56, 5306–5321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shumba, C. S. & Lusambili, A. M. Not enough traction: barriers that aspiring researchers from low- and middle-income countries face in global health research. J. Glob. Health Econ. Policy 1, e2021002 (2021).

    Google Scholar 

  157. Blicharska, M. et al. Steps to overcome the north–south divide in research relevant to climate change policy and practice. Nat. Clim. Change 7, 21–27 (2017).

    Article  Google Scholar 

  158. Henze, M., van Loosdrecht, M. C. M., Ekama, G. A. & Brdjanovic, D. Biological Wastewater Treatment: Principles, Modelling and Design (IWA, 2008).

  159. von Sperling, M., Verbyla, M. E. & Oliveira, S. M. A. C. Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners (IWA, 2020).

  160. Strande, L., Velkushanova, K. & Brdjanovic, D. Setting the stage. In Methods for Faecal Sludge Analysis (eds Velkushanova, K. et al.) 1–14 (IWA, 2021).

  161. Tilley, E., Ulrich, L., Lüthi, C., Reymond, P. & Zurbrügg, C. Compendium of Sanitation Systems and Technologies 2nd revised edn (Swiss Federal Institute of Aquatic Science and Technology (Eawag), 2014).

  162. Pearce, J. M. Economic savings for scientific free and open source technology: a review. HardwareX 8, e00139 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Dupont, L., Kasmi, F., Pearce, J. M. & Ortt, R. in Cosmo-Local Reader (eds Ramos, J. et al.) 52–59 (FuturesLab, 2021).

  164. DeVor, R. E., Kapoor, S. G., Cao, J. & Ehmann, K. F. Transforming the landscape of manufacturing: distributed manufacturing based on Desktop Manufacturing (DM)2. J. Manuf. Sci. Eng. https://doi.org/10.1115/1.4006095 (2012).

  165. Droujko, J. & Molnar, P. Open-source self-made sensors show high potential in river research. Nat. Water 1, 758–759 (2023).

    Article  Google Scholar 

  166. Reynaert, E. et al. Predicting microbial water quality in on-site water reuse systems with online sensors. Water Res. 240, 120075 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Reynaert, E., Gretener, F., Julian, T. R. & Morgenroth, E. Sensor setpoints that ensure compliance with microbial water quality targets for membrane bioreactor and chlorination treatment in on-site water reuse systems. Water Res. X 18, 100164 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge N. Andriessen, K. Coppens, S. Dangi, B. Evans, R. Johnston, E. Kemboi, N. A. Montoya, E. Morgenroth, A. S. Narayan, C. B. Niwagaba, K. Shaw, M. Vogel, G. Wainaina and B. J. Ward for much appreciated critical feedback during the writing process. I also acknowledge Quaint GmbH for the figure production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Strande.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Water thanks Damir Brdjanovic and Michael Templeton for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strande, L. Integrating recent scientific advances to enhance non-sewered sanitation in urban areas. Nat Water 2, 405–418 (2024). https://doi.org/10.1038/s44221-024-00240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00240-7

  • Springer Nature Limited

Navigation