Log in

Expanding chemistry through in vitro and in vivo biocatalysis

  • Review
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts—high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions—offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1: Enzymatic transformations for synthetic chemistry.
Fig. 2: The use of biocatalysis for synthetic applications.
Fig. 3: Expanding the diversity of chemical space.
Fig. 4: Multi-step catalysis in vitro and in vivo.

Similar content being viewed by others

References

  1. Hafner, J., MohammadiPeyhani, H., Sveshnikova, A., Scheidegger, A. & Hatzimanikatis, V. Updated ATLAS of biochemistry with new metabolites and improved enzyme prediction power. ACS Synth. Biol. 9, 1479–1482 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    ADS  CAS  PubMed  Google Scholar 

  3. Koeller, K. M. & Wong, C.-H. Enzymes for chemical synthesis. Nature 409, 232–240 (2001).

    ADS  CAS  PubMed  Google Scholar 

  4. Hönig, M., Sondermann, P., Turner, N. J. & Carreira, E. M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew. Chem. Int. Ed. 56, 8942–8973 (2017).

    Google Scholar 

  5. Romero, E. et al. Enzymatic late-stage modifications: better late than never. Angew. Chem. Int. Ed. 60, 16824–16855 (2021).

    CAS  Google Scholar 

  6. Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60, 88–119 (2021).

    CAS  Google Scholar 

  7. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010). This work was a landmark in the field, highlighting the utility of transaminases for the preparation of chiral amines and its impact in reducing cost and waste generation at the commercial production scale of sitagliptin at Merck.

    ADS  CAS  PubMed  Google Scholar 

  8. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    CAS  Google Scholar 

  9. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS  PubMed  Google Scholar 

  10. Bergman, R. G. C–H activation. Nature 446, 391–393 (2007).

    ADS  CAS  PubMed  Google Scholar 

  11. Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang, M. C. Y. & Keasling, J. D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2, 674–681 (2006).

    CAS  PubMed  Google Scholar 

  13. Stout, C. N. & Renata, H. Reinvigorating the chiral pool: chemoenzymatic approaches to complex peptides and terpenoids. Acc. Chem. Res. 54, 1143–1156 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sono, M., Roach, M. P., Coulter, E. D. & Dawson, J. H. Heme-containing oxygenases. Chem. Rev. 96, 2841–2888 (1996).

    CAS  PubMed  Google Scholar 

  15. Guengerich, F. P. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal. 8, 10964–10976 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Park, J. et al. Fungal cytochrome P450 database. BMC Genomics 9, 402 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Wang, H. et al. PCPD: plant cytochrome P450 database and web-based tools for structural construction and ligand docking. Synth. Syst. Biotechnol. 6, 102–109 (2021).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  19. Narayan, A. R. H. et al. Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations. Nat. Chem. 7, 653–660 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gally, C., Nestl, B. M. & Hauer, B. Engineering Rieske non-heme iron oxygenases for the asymmetric dihydroxylation of alkenes. Angew. Chem. Int. Ed. 54, 12952–12956 (2015).

    CAS  Google Scholar 

  21. Zhang, K., El Damaty, S. & Fasan, R. P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity. J. Am. Chem. Soc. 133, 3242–3245 (2011).

    CAS  PubMed  Google Scholar 

  22. Li, F., Deng, H. & Renata, H. Remote B-ring oxidation of sclareol with an engineered P450 facilitates divergent access to complex terpenoids. J. Am. Chem. Soc. 144, 7616–7621 (2022).

    CAS  PubMed  Google Scholar 

  23. Paddon, C. J. & Keasling, J. D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355–367 (2014).

    CAS  PubMed  Google Scholar 

  24. Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    CAS  PubMed  Google Scholar 

  26. Glenn, W. S., Nims, E. & O’Connor, S. E. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. J. Am. Chem. Soc. 133, 19346–19349 (2011).

    CAS  PubMed  Google Scholar 

  27. Andorfer, M. C., Park, H. J., Vergara-Coll, J. & Lewis, J. C. Directed evolution of RebH for catalyst-controlled halogenation of indole C–H bonds. Chem. Sci. 7, 3720–3729 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).

    ADS  CAS  PubMed  Google Scholar 

  29. Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Neugebauer, M. E. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. https://doi.org/10.1038/s41589-019-0355-x (2019).

  31. Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)- and α-ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C−H bonds. Angew. Chem. Int. Ed. 135, e202301370 (2023).

    ADS  Google Scholar 

  32. Neugebauer, M. E. et al. Reaction pathway engineering converts a radical hydroxylase into a halogenase. Nat. Chem. Biol. 18, 171–179 (2022).

    CAS  PubMed  Google Scholar 

  33. Mitchell, A. J. et al. Structure-guided reprogramming of a hydroxylase to halogenate its small molecule substrate. Biochemistry 56, 441–444 (2017).

    CAS  PubMed  Google Scholar 

  34. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013). This work provided a paradigm for engineering enzymatic reaction chemistry for abiotic synthetic transformations, using insight into organic chemistry to develop diazo regents for delivering elements for P450 group transfer.

    ADS  CAS  PubMed  Google Scholar 

  35. Dydio, P., Key, H. M., Hayashi, H., Clark, D. S. & Hartwig, J. F. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor. J. Am. Chem. Soc. 139, 1750–1753 (2017).

    CAS  PubMed  Google Scholar 

  36. Huang, J. et al. Complete integration of carbene-transfer chemistry into biosynthesis. Nature 617, 403–408 (2023). This work shows how the discovery of biosynthetic pathways can facilitate the complete biological reproduction of synthetic enzyme chemistry. In this case, the biosynthesis of azaserine and the parallel expression of an engineered P450 enables carbene-transfer chemistry inside of living cells.

    ADS  CAS  PubMed  Google Scholar 

  37. Kan, S. B. J., Huang, X., Gumulya, Y., Chen, K. & Arnold, F. H. Genetically programmed chiral organoborane synthesis. Nature 552, 132–136 (2017).

    ADS  CAS  PubMed  Google Scholar 

  38. Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354, 1048–1051 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farwell, C. C., McIntosh, J. A., Hyster, T. K., Wang, Z. J. & Arnold, F. H. Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer. J. Am. Chem. Soc. 136, 8766–8771 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    ADS  CAS  PubMed  Google Scholar 

  42. Sreenilayam, G., Moore, E. J., Steck, V. & Fasan, R. Metal substitution modulates the reactivity and extends the reaction scope of myoglobin carbene transfer catalysts. Adv. Synth. Catal. 359, 2076–2089 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J., Huang, X., Zhang, R. K. & Arnold, F. H. Enantiodivergent α-amino C–H fluoroalkylation catalyzed by engineered cytochrome P450s. J. Am. Chem. Soc. 141, 9798–9802 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nam, D. et al. Enantioselective synthesis of α-trifluoromethyl amines via biocatalytic N–H bond insertion with acceptor–acceptor carbene donors. J. Am. Chem. Soc. 144, 2590–2602 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Goldberg, N. W., Knight, A. M., Zhang, R. K. & Arnold, F. H. Nitrene transfer catalyzed by a non-heme iron enzyme and enhanced by non-native small-molecule ligands. J. Am. Chem. Soc. 141, 19585–19588 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, Q. et al. Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer. Nat. Synth. https://doi.org/10.1038/s44160-024-00507-7 (2024).

  47. Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Takayama, S., McGarvey, G. J. & Wong, C.-H. Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol. 51, 285–310 (1997).

    CAS  PubMed  Google Scholar 

  49. Schrittwieser, J. H., Velikogne, S., Hall, M. & Kroutil, W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem. Rev. 118, 270–348 (2018).

    CAS  PubMed  Google Scholar 

  50. Fang, J., Hait, D., Head-Gordon, M. & Chang, M. C. Y. Chemoenzymatic platform for synthesis of chiral organofluorines based on type II aldolases. Angew. Chem. Int. Ed. 58, 11841–11845 (2019).

    CAS  Google Scholar 

  51. Fang, J., Turner, L. E. & Chang, M. C. Y. Biocatalytic asymmetric construction of secondary and tertiary fluorides from β-fluoro-α-ketoacids. Angew. Chem. Int. Ed. 61, e202201602 (2022).

    CAS  Google Scholar 

  52. Dunn, B. J. & Khosla, C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J. R. Soc. Interface 10, 20130297 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Koryakina, I. et al. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases. ACS Chem. Biol. 8, 200–208 (2013).

    CAS  PubMed  Google Scholar 

  54. Sirirungruang, S. et al. Engineering site-selective incorporation of fluorine into polyketides. Nat. Chem. Biol. 18, 886–893 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rittner, A. et al. Chemoenzymatic synthesis of fluorinated polyketides. Nat. Chem. 14, 1000–1006 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mazzaferro, L. S., Hüttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J. Am. Chem. Soc. 137, 12289–12295 (2015).

    CAS  PubMed  Google Scholar 

  57. Zetzsche, L. E. et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603, 79–85 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schultz, E. E., Braffman, N. R., Luescher, M. U., Hager, H. H. & Balskus, E. P. Biocatalytic Friedel–Crafts alkylation using a promiscuous biosynthetic enzyme. Angew. Chem. Int. Ed. 58, 3151–3155 (2019).

    CAS  Google Scholar 

  59. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    CAS  PubMed  Google Scholar 

  60. Mayer, C., Gillingham, D. G., Ward, T. R. & Hilvert, D. An artificial metalloenzyme for olefin metathesis. Chem. Commun. 47, 12068–12070 (2011).

    CAS  Google Scholar 

  61. Abe, S. et al. Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage. J. Am. Chem. Soc. 130, 10512–10514 (2008).

    CAS  PubMed  Google Scholar 

  62. Filice, M. et al. Preparation of an immobilized lipase-palladium artificial metalloenzyme as catalyst in the Heck reaction: role of the solid phase. Adv. Synth. Catal. 357, 2687–2696 (2015).

    CAS  Google Scholar 

  63. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016). This work shows that artificial metalloenzymes engineered using a tethered synthetic ruthenium catalyst for olefin metathesis can be expressed and evolved in living cells, providing a potential roadmap for evolution of activities using completely abiotic cofactors.

    ADS  CAS  PubMed  Google Scholar 

  64. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016). This work was a landmark for discovering new modes of enzymatic catalysis, using photocatalysis as a creative approach to generate reactive radical intermediates to carry out interesting and diverse synthetic transformations in an enzyme active site.

    ADS  CAS  PubMed  Google Scholar 

  65. Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).

    ADS  CAS  PubMed  Google Scholar 

  66. Anbarasan, P. et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491, 235–239 (2012). This work showed how rethinking mature fermentation processes using chemical ingenuity allows for the scalable production of chemicals. In this case, the products of the acetone–butanol–ethanol fermentation could be combined with Guerbet chemistry to produce mid-chain-length hydrocarbons as biofuels.

    ADS  CAS  PubMed  Google Scholar 

  67. Wang, Z. Q. et al. A dual cellular–heterogeneous catalyst strategy for the production of olefins from glucose. Nat. Chem. 13, 1178–1185 (2021).

    CAS  PubMed  Google Scholar 

  68. Pyser, J. B. et al. Stereodivergent, chemoenzymatic synthesis of azaphilone natural products. J. Am. Chem. Soc. 141, 18551–18559 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS  PubMed  Google Scholar 

  70. Ivanenkov, Y. A., Zagribelnyy, B. A. & Aladinskiy, V. A. Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? J. Med. Chem. 62, 10026–10043 (2019).

    CAS  PubMed  Google Scholar 

  71. Fink, T. & Reymond, J.-L. Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J. Chem. Inf. Model. 47, 342–353 (2007).

    CAS  PubMed  Google Scholar 

  72. Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    CAS  Google Scholar 

  73. Davison, E. K. & Brimble, M. A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 52, 1–8 (2019).

    CAS  PubMed  Google Scholar 

  74. Stone, S., Newman, D. J., Colletti, S. L. & Tan, D. S. Cheminformatic analysis of natural product-based drugs and chemical probes. Nat. Prod. Rep. 39, 20–32 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, Y., Garcia de Lomana, M., Friedrich, N.-O. & Kirchmair, J. Characterization of the chemical space of known and readily obtainable natural products. J. Chem. Inf. Model. 58, 1518–1532 (2018).

    CAS  PubMed  Google Scholar 

  76. Lawson, A. D. G., MacCoss, M. & Heer, J. P. Importance of rigidity in designing small molecule drugs to tackle protein–protein interactions (PPIs) through stabilization of desired conformers. J. Med. Chem. 61, 4283–4289 (2018).

    CAS  PubMed  Google Scholar 

  77. Over, B. et al. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem. 5, 21–28 (2013).

    CAS  PubMed  Google Scholar 

  78. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Barelier, S. et al. Increasing chemical space coverage by combining empirical and computational fragment screens. ACS Chem. Biol. 9, 1528–1535 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ertl, P., Altmann, E. & McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 63, 8408–8418 (2020).

    CAS  PubMed  Google Scholar 

  81. Hert, J., Irwin, J. J., Laggner, C., Keiser, M. J. & Shoichet, B. K. Quantifying biogenic bias in screening libraries. Nat. Chem. Biol. 5, 479–483 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang, M.-C., Zou, Y., Watanabe, K., Walsh, C. T. & Tang, Y. Oxidative cyclization in natural product biosynthesis. Chem. Rev. 117, 5226–5333 (2017).

    CAS  PubMed  Google Scholar 

  83. Grigalunas, M. et al. Natural product fragment combination to performance-diverse pseudo-natural products. Nat. Commun. 12, 1883 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grigalunas, M., Brakmann, S. & Waldmann, H. Chemical evolution of natural product structure. J. Am. Chem. Soc. 144, 3314–3329 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, S. S. & Sattely, E. S. Dirigent proteins guide asymmetric heterocoupling for the synthesis of complex natural product analogues. J. Am. Chem. Soc. 143, 5011–5021 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lloyd, C. T. et al. Discovery, structure and mechanism of a tetraether lipid synthase. Nature 609, 197–203 (2022).This work demonstrates an interesting mechanism by which two radicals can be generated and coupled using radical SAM enzymes to achieve sp3sp3 coupling.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cacho, R. A., Chooi, Y.-H., Zhou, H. & Tang, Y. Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chem. Biol. 8, 2322–2330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sib, A. & Gulder, T. A. M. Stereoselective total synthesis of bisorbicillinoid natural products by enzymatic oxidative dearomatization/dimerization. Angew. Chem. Int. Ed. 56, 12888–12891 (2017).

    CAS  Google Scholar 

  89. Baker Dockrey, S. A., Lukowski, A. L., Becker, M. R. & Narayan, A. R. H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem. 10, 119–125 (2018). This work showcases a creative chemical approach to using flavin adenine dinucleotide (FAD)-dependent monooxygenases for oxidative dearomatization as a strategy for creating stereocentres.

    CAS  PubMed  Google Scholar 

  90. Yoshikuni, Y., Ferrin, T. E. & Keasling, J. D. Designed divergent evolution of enzyme function. Nature 440, 1078–1082 (2006). This work shows how the plasticity of terpene synthase active sites can be utilized to engineer the production of a wide range of different sesquiterpenes.

    ADS  CAS  PubMed  Google Scholar 

  91. Johnson, L. A., Dunbabin, A., Benton, J. C. R., Mart, R. J. & Allemann, R. K. Modular chemoenzymatic synthesis of terpenes and their analogues. Angew. Chem. 132, 8564–8568 (2020).

    ADS  Google Scholar 

  92. Crawford, J. M. et al. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 461, 1139–1143 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    PubMed  Google Scholar 

  94. Maresh, J. J. et al. Strictosidine synthase: mechanism of a Pictet−Spengler catalyzing enzyme. J. Am. Chem. Soc. 130, 710–723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, M., Liu, C.-T. & Tang, Y. Discovery and biocatalytic application of a PLP-dependent amino acid γ-substitution enzyme that catalyzes C–C bond formation. J. Am. Chem. Soc. 142, 10506–10515 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sutherland, E., Harding, C. J. & Czekster, C. M. Active site remodelling of a cyclodipeptide synthase redefines substrate scope. Commun. Chem. 5, 101 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jeon, B., Wang, S.-A., Ruszczycky, M. W. & Liu, H. Natural [4 + 2]-cyclases. Chem. Rev. 117, 5367–5388 (2017).

    CAS  PubMed  Google Scholar 

  98. Jamieson, C. S., Ohashi, M., Liu, F., Tang, Y. & Houk, K. N. The expanding world of biosynthetic pericyclases: cooperation of experiment and theory for discovery. Nat. Prod. Rep. 36, 698–713 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao, L. et al. Enzymatic control of endo- and exo-stereoselective Diels–Alder reactions with broad substrate scope. Nat. Catal. 4, 1059–1069 (2021).

    CAS  Google Scholar 

  100. Ohashi, M. et al. An enzymatic Alder-ene reaction. Nature 586, 64–69 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, Z. et al. An NmrA-like enzyme-catalysed redox-mediated Diels–Alder cycloaddition with anti-selectivity. Nat. Chem. 15, 526–534 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Andrews, P. R., Smith, G. D. & Young, I. G. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate. Biochemistry 12, 3492–3498 (1973).

    CAS  PubMed  Google Scholar 

  103. Zhang, X. et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 369, 799–806 (2020). This work reports a tour de force in combining chemical synthesis with enzymatic late-stage functionalization to provide complex molecules with structural diversity.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Doyon, T. J. et al. Chemoenzymatic o-quinone methide formation. J. Am. Chem. Soc. 141, 20269–20277 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  106. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. van Santen, J. A. et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00363-7 (2021).

  109. Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, L. J. et al. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat. Chem. Biol. 17, 872–877 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, J., Simurdiak, M. & Zhao, H. Reconstitution and characterization of aminopyrrolnitrin oxygenase, a Rieske N-oxygenase that catalyzes unusual arylamine oxidation. J. Biol. Chem. 280, 36719–36728 (2005).

    CAS  PubMed  Google Scholar 

  112. Nelp, M. T. & Bandarian, V. A single enzyme transforms a carboxylic acid into a nitrile through an amide intermediate. Angew. Chem. Int. Ed. 54, 10627–10629 (2015).

    CAS  Google Scholar 

  113. Woodyer, R. D. et al. Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem. Biol. 13, 1171–1182 (2006).

    CAS  PubMed  Google Scholar 

  114. Sugai, Y., Katsuyama, Y. & Ohnishi, Y. A nitrous acid biosynthetic pathway for diazo group formation in bacteria. Nat. Chem. Biol. 12, 73–75 (2016).

    CAS  PubMed  Google Scholar 

  115. O’Hagan, D. & Deng, H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem. Rev. 115, 634–649 (2015).

    PubMed  Google Scholar 

  116. Galván, A. E. et al. Identification of the biosynthetic gene cluster for the organoarsenical antibiotic arsinothricin. Microbiol. Spectr. 9, e00502–e00521 (2021).

    Google Scholar 

  117. Kayrouz, C. M., Huang, J., Hauser, N. & Seyedsayamdost, M. R. Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 610, 199–204 (2022).

    ADS  CAS  PubMed  Google Scholar 

  118. Zhu, X., Liu, J. & Zhang, W. De novo biosynthesis of terminal alkyne-labeled natural products. Nat. Chem. Biol. 11, 115–120 (2015).

    CAS  PubMed  Google Scholar 

  119. Marchand, J. A. et al. Discovery of a pathway for terminal-alkyne amino acid biosynthesis. Nature 567, 420–424 (2019).

    ADS  CAS  PubMed  Google Scholar 

  120. Walker, M. C. et al. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341, 1089–1094 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Du, Y.-L., He, H.-Y., Higgins, M. A. & Ryan, K. S. A heme-dependent enzyme forms the nitrogen–nitrogen bond in piperazate. Nat. Chem. Biol. 13, 836–838 (2017).

    CAS  PubMed  Google Scholar 

  122. Ng, T. L., Rohac, R., Mitchell, A. J., Boal, A. K. & Balskus, E. P. An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin. Nature 566, 94–99 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Del Rio Flores, A. et al. Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Nat. Chem. Biol. 17, 1305–1313 (2021).

    PubMed  PubMed Central  Google Scholar 

  124. Winkler, C. K., Schrittwieser, J. H. & Kroutil, W. Power of biocatalysis for organic synthesis. ACS Cent. Sci. 7, 55–71 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. McKinnie, S. M. K. et al. Total enzyme syntheses of napyradiomycins A1 and B1. J. Am. Chem. Soc. 140, 17840–17845 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, J., Li, F., King-Smith, E. & Renata, H. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nat. Chem. 12, 173–179 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, W., McArthur, J. B. & Chen, X. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydr. Res. 472, 86–97 (2019).

    CAS  PubMed  Google Scholar 

  128. DeAngelis, P. L., Liu, J. & Linhardt, R. J. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature’s longest or most complex carbohydrate chains. Glycobiology 23, 764–777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    CAS  PubMed  Google Scholar 

  130. Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat. Commun. 10, 2383 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  131. Korman, T. P., Opgenorth, P. H. & Bowie, J. U. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 8, 15526 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sherkhanov, S. et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat. Commun. 11, 4292 (2020). This work is one of a series of papers demonstrating that entire metabolic pathways can be reconstituted from glucose in vitro, enabling the total biosynthesis of a broad range of molecules from biomass using isolated enzyme, resulting in yields higher than tolerated by living systems.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Valliere, M. A., Korman, T. P., Arbing, M. A. & Bowie, J. U. A bio-inspired cell-free system for cannabinoid production from inexpensive inputs. Nat. Chem. Biol. 16, 1427–1433 (2020).

    CAS  PubMed  Google Scholar 

  134. Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N. S. & Erb, T. J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019). This work is a landmark in demonstrating the use of nine enzymes in an abiotic cascade to produce the drug islatravir by scientists at Merck, highlighting a creative pathway designed to produce a nucleotide analogue that contains both a fluorine and an alkyne substituent. Notably this cascade is less than half the number of steps of preceding chemical routes and provides improved stereochemical purity and atom economy at every step.

    ADS  CAS  PubMed  Google Scholar 

  136. Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Schomburg, I. et al. The BRENDA enzyme information system–from a database to an expert system. J. Biotechnol. 261, 194–206 (2017).

    CAS  PubMed  Google Scholar 

  138. Sun, D. et al. EnzyMine: a comprehensive database for enzyme function annotation with enzymatic reaction chemical feature. Database https://doi.org/10.1093/database/baaa065 (2020).

  139. Burgener, S., Luo, S., McLean, R., Miller, T. E. & Erb, T. J. A roadmap towards integrated catalytic systems of the future. Nat. Catal. 3, 186–192 (2020).

    Google Scholar 

  140. Kiefer, A. F., Liu, Y., Gummerer, R., Jäger, C. & Deska, J. An artificial in vitro metabolism to angiopterlactone B inspired by traditional retrosynthesis. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202301178 (2023).

  141. D’Agostino, P. M., Seel, C. J., Ji, X., Gulder, T. & Gulder, T. A. M. Biosynthesis of cyanobacterin, a paradigm for furanolide core structure assembly. Nat. Chem. Biol. 18, 652–658 (2022).

    PubMed  Google Scholar 

  142. Stephanopoulos, G. N., Aristidou, A. A. & Nielsen, J. Metabolic Engineering: Principles and Methodologies (Academic Press, 1998).

  143. Keasling, J. D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3, 64–76 (2008).

    CAS  PubMed  Google Scholar 

  144. Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

    CAS  PubMed  Google Scholar 

  145. Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    CAS  Google Scholar 

  146. **ong, M., Schneiderman, D. K., Bates, F. S., Hillmyer, M. A. & Zhang, K. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl Acad. Sci. USA 111, 8357–8362 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  147. Srinivasan, P. & Smolke, C. D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585, 614–619 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Olson, D. G., McBride, J. E., Joe Shaw, A. & Lynd, L. R. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23, 396–405 (2012).

    CAS  PubMed  Google Scholar 

  149. Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022).

    CAS  PubMed  Google Scholar 

  150. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    ADS  CAS  PubMed  Google Scholar 

  151. Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022). This work demonstrates the highly successful evolution of an enzyme that can depolymerize and recycle a plastic. By using an enzyme to hydrolyze polyethylene terephthalate (PET), monomers are cleanly produced that can be repolymerized.

    ADS  CAS  PubMed  Google Scholar 

  152. Seifrid, M. et al. Autonomous chemical experiments: challenges and perspectives on establishing a self-driving lab. Acc. Chem. Res. 55, 2454–2466 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).

    CAS  PubMed  Google Scholar 

  154. Markin, C. J. et al. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373, eabf8761 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Holland-Moritz, D. A. et al. Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale. Angew. Chem. Int. Ed. 59, 4470–4477 (2020). This work describes the development of a high-throughput liquid-droplet screening system that can analyse 25-nl samples at a rate of 15,000 in 6 h by mass spectrometery, greatly increasing the potential for a general screening approach for engineering, characterization and discovery of enzymes.

    CAS  Google Scholar 

  156. Li, C. et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 19, 1031–1041 (2023). This work highlights how technological advances in analytical chemistry can be creatively applied to biological processes to reveal information. Here the authors combine transcriptomics and metabolomics with single-cell resolution in a medicinal plant to rapidly identify and discover entire biosynthetic pathways while tracking the movement of intermediates between compartments.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim, L. J. et al. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat. Chem. Biol. 17, 872–877 (2021).This work demonstrates a pipeline for the discovery of natural products, allowing for the detection of the products ofsilentbiosynthetic gene clusters while rapidly determining their structure via microcrystal electron diffraction.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018).

    CAS  Google Scholar 

  159. Garg, N. K., Caspi, D. D. & Stoltz, B. M. The total synthesis of (+)-dragmacidin F. J. Am. Chem. Soc. 126, 9552–9553 (2004).

    CAS  PubMed  Google Scholar 

  160. Lichman, B. R. et al. The evolutionary origins of the cat attractant nepetalactone in catnip. Sci. Adv. 6, eaba0721 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (R01 GM134271) and the National Science Foundation (CLP 2204014) for their generous support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and editing of this paper.

Corresponding author

Correspondence to Michelle C. Y. Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Nicholas Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kissman, E.N., Sosa, M.B., Millar, D.C. et al. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 631, 37–48 (2024). https://doi.org/10.1038/s41586-024-07506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07506-w

  • Springer Nature Limited

Navigation