Log in
Extended Data Fig. 7: Beta diversity and phylogenetic beta diversity. | Nature

Extended Data Fig. 7: Beta diversity and phylogenetic beta diversity.

From: Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors

Extended Data Fig. 7

Ordinations (nMDS), cluster dendrograms (UPGMA) and latitudinal and bathymetric representations of (phylogenetic) beta diversity clusters for each 1.0° latitude × 100 m depth cell across our study region. ac, Simpson’s phylogenetic beta diversity (pβSim) (a), Sorensen’s phylogenetic beta diversity (pβSor) (b) and Simpson’s beta diversity of the presence–absence of species (βSim) (c). Nine clusters (vertical red lines) are coloured to highlight coherent patterns across latitude and depth. The three methods showed broad similarities in grou** the fauna into tropical, temperate and polar regions and sublittoral, upper bathyal and lower bathyal–abyssal depth strata, although the cluster hierarchy can differ. The pβSim and βSim plots emphasized the strong compositional turnover between 100 and 300 m at tropical and temperate latitudes (Fig. 1f and Extended Data Fig. 3e). pβSor—which emphasizes species richness gradients in addition to compositional turnover—clustered upper to mid-bathyal cells (200–2,000 m) separately from those in the lower bathyal and abyss (>2,000 m), reflecting a zone of higher species richness and relative phylogenetic diversity (Fig. 1). The pβSim and βSim analyses also identified a small shallow-water subtropical cluster that reflects the heightened latitudinal turnover between 30 and 40° S9. The pβSor analysis separated two species-poor Antarctic deep-sea regions. The extent of the temperate sublittoral zone varied among analyses, possibly owing to it being a small zone of admixture and turnover. The number of clusters was reduced to five (Fig. 1g) for the MuSSE analyses (see Methods for rationale).

Back to article page

Navigation