Introduction

Optically addressable defect-based qubits offer a distinct advantage in their ability to operate with high fidelity under room temperature conditions1,2. Despite the tremendous progress made in years of research, systems that exist today remain inadequate for real-world applications. The identification of stable single-photon emitters (SPEs) in 2D materials has opened up a new playground for novel quantum phenomena and quantum technology applications, with improved scalability in device fabrication and leverage in do** spatial control, qubit entanglement, and qubit tuning3,4. In particular, hexagonal boron nitride (h-BN) has demonstrated that it can host stable defect-based SPEs5,6,7,8 and spin triplet defects9,10. However, persistent challenges must be resolved before 2D quantum defects can become the most promising quantum information platform. These challenges include the undetermined chemical nature of existing SPEs7,11, difficulties in the controlled generation of desired spin defects, and scarcity of reliable theoretical methods which can accurately predict critical physical parameters for defects in 2D materials due to their complex many-body interactions.

To circumvent these challenges, the design of promising spin defects by high-integrity theoretical methods is urgently needed. Introducing extrinsic defects can be unambiguously produced and controlled, which fundamentally solves the current issues of the undetermined chemical nature of existing SPEs in 2D systems. As highlighted by refs. 2,12, promising spin qubit candidates should satisfy several essential criteria: deep defect levels, stable high spin states, large zero-field splitting (ZFS), efficient radiative recombination, high intersystem crossing (ISC) rates, and long spin coherence and relaxation time. Using these criteria for theoretical screening can effectively identify promising candidates but requires theoretical development of first-principles methods, significantly beyond the static and mean-field level. For example, accurate defect charge transition levels in 2D materials necessitates careful treatment of defect charge corrections for removal of spurious charge interactions13,14,15 and electron correlations for non-neutral excitation, e.g. from GW approximations15,16 or Koopmans-compliant hybrid functionals17,18,19,20. Optical excitation and exciton radiative lifetime must account for defect–exciton interactions, e.g. by solving the Bethe–Salpeter equation (BSE), due to large exciton-binding energies in 2D systems21,Full size image