Log in

Cellular and Molecular Biology

Cell-cell contact-dependent secretion of large-extracellular vesicles from EFNBhigh cancer cells accelerates peritoneal dissemination

  • Article
  • Published:
British Journal of Cancer Submit manuscript

Abstract

Background

Large non-apoptotic vesicles released from the plasma membrane protrusions are classified as large-EVs (LEVs). However, the triggers of LEV secretion and their functions in tumors remain unknown.

Methods

Coculture system of cancer cells, peritoneal mesothelial cells (PMCs), and macrophages (MΦs) was conducted to observe cell-cell contact-mediated LEV secretion. Lineage tracing of PMCs was performed using Wt1CreERT2-tdTnu mice to explore the effects of LEVs on PMCs in vivo, and lymphangiogenesis was assessed by qRT-PCR and flow-cytometry.

Results

In peritoneal dissemination, cancer cells expressing Ephrin-B (EFNB) secreted LEVs upon the contact with PMCs expressing ephrin type-B (EphB) receptors, which degraded mesothelial barrier by augmenting mesothelial-mesenchymal transition. LEVs were incorporated in subpleural MΦs, and these MΦs transdifferentiated into lymphatic endothelial cells (LEC) and integrated into the lymphatic vessels. LEC differentiation was also induced in PMCs by interacting with LEV-treated MΦs, which promoted lymphangiogenesis. Mechanistically, activation of RhoA-ROCK pathway through EFNB reverse signaling induced LEV secretion. EFNBs on LEVs activated EphB forward signaling in PMC and MΦs, activating Akt, ERK and TGF-β1 pathway, which were indispensable for causing MMT and LEC differentiation. LEVs accelerated peritoneal dissemination and lymphatic invasions by cancer cells. Blocking of EFNBs on LEVs using EphB-Fc-fusion protein attenuated these events.

Conclusions

EFNBhigh cancer cells scattered LEVs when they attached to PMCs, which augmented the local reactions of PMC and MΦ (MMT and lymphangiogenesis) and exaggerated peritoneal dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1: LEVs are released from HT29 cells by the contact with PMCs and MC3T3-E1 cells.
Fig. 2: Ephrin-B mediated RhoA-Rock activation is indispensable for LEV secretion.
Fig. 3: LEVs carry TGF-β1/Akt and EFNBs, which induced MMT in PMCs.
Fig. 4: LEV augments uptake by MΦs, and upregulates immunosuppressive genes.
Fig. 5: LEV exaggerates dissemination and lymphatic invasion of cancer cells.
Fig. 6: LEV induced transdifferentiation of MΦ and PMC to LEC.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Pezzicoli G, Tucci M, Lovero D, Silvestris F, Porta C, Mannavola F. Large extracellular vesicles-a new frontier of liquid biopsy in oncology. Int J Mol Sci. 2020;21:6543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merchant ML, Rood IM, Deegens JKJ, Klein JB. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol. 2017;13:731–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheta M, Taha EA, Lu Y, Eguchi T. Extracellular vesicles: new classification and tumor immunosuppression. Biology. 2023;12:110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ciardiello C, Migliorino R, Leone A, Budillon A. Large extracellular vesicles: size matters in tumor progression. Cytokine Growth Factor Rev. 2020;51:69–74.

    Article  CAS  PubMed  Google Scholar 

  5. Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009;69:5601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yekula A, Minciacchi VR, Morello M, Shao HL, Park Y, Zhang X, et al. Large and small extracellular vesicles released by glioma cells in vitro and in vivo. J Extracell Vesicles. 2020;9:1689784.

    Article  CAS  PubMed  Google Scholar 

  7. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181:1573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wright PK, Jones SB, Ardern N, Ward R, Clarke RB, Sotgia F, et al. 17 beta-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells. Oncotarget. 2014;5:3055–65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patton MC, Zubair H, Khan MA, Singh S, Singh AP. Hypoxia alters the release and size distribution of extracellular vesicles in pancreatic cancer cells to support their adaptive survival. J Cell Biochem. 2020;121:828–39.

    Article  CAS  PubMed  Google Scholar 

  10. Ahmadzada T, Vijayan A, Vafaee F, Azimi A, Reid G, Clarke S, et al. Small and large extracellular vesicles derived from pleural mesothelioma cell lines offer biomarker potential. Cancers. 2023;15:2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerdtsson AS, Setayesh SM, Malihi PD, Ruiz C, Carlsson A, Nevarez R, et al. Large extracellular vesicle characterization and association with circulating tumor cells in metastatic castrate resistant prostate cancer. Cancers. 2021;13:1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minciacchi VR, Spinelli C, Reis-Sobreiro M, Cavallini L, You S, Zandian M, et al. MYC mediates large oncosome-induced fibroblast reprogramming in prostate cancer. Cancer Res. 2017;77:2306–17.

    Article  CAS  PubMed  Google Scholar 

  13. Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma membrane lipid domains as platforms for vesicle biogenesis and shedding? Biomolecules. 2018;8:94.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang M, Chen W, Zhang Y, Yang R, Wang YR, Yuan HB. Ephrinli/EphB signaling contributes to spinal nociceptive processing via calpain-1 and caspase-3. Mol Med Rep. 2018;18:268–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E. Role of cortical tension in bleb growth. Proc Natl Acad Sci USA. 2009;106:18581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu Y, Sun YJ, Wan C, Dai XM, Wu SH, Lo PC, et al. Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J Nanobiotechnology. 2022;20:189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19:1875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ridley AJ. Life at the leading edge. Cell. 2011;145:1012–22.

    Article  CAS  PubMed  Google Scholar 

  19. Charras GT, Hu CK, Coughlin M, Mitchison TJ. Reassembly of contractile actin cortex in cell blebs. J Cell Biol. 2006;175:477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of Eph receptors and ephrins in the regulation of cell migration and tissue assembly. Developmental Cell. 2004;7:465–80.

    Article  CAS  PubMed  Google Scholar 

  21. Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.

    Article  CAS  PubMed  Google Scholar 

  22. Daar IO. Non-SH2/PDZ reverse signaling by ephrins. Semin Cell Developmental Biol. 2012;23:65–74.

    Article  CAS  Google Scholar 

  23. Tanaka M, Kamata R, Takigahira M, Yanagihara K, Sakai R. Phosphorylation of ephrin-B1 regulates dissemination of gastric scirrhous carcinoma. Am J Pathol. 2007;171:68–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka M, Kamata R, Yanagihara K, Sakai R. Suppression of gastric cancer dissemination by ephrin-B1-derived peptide. Cancer Sci. 2010;101:87–93.

    Article  CAS  PubMed  Google Scholar 

  25. Poliakov A, Wilkinson DG. Ephrins make eyes with planar cell polarity. Nat Cell Biol. 2006;8:7–8.

    Article  CAS  PubMed  Google Scholar 

  26. Singh A, Winterbottom E, Daar IO. Eph/ephrin signaling in cell-cell and cell-substrate adhesion. Front Biosci-Landmark. 2012;17:473–97.

    Article  CAS  Google Scholar 

  27. Li JL, Guo TK. Role of peritoneal mesothelial cells in the progression of peritoneal metastases. Cancers. 2022;14:2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal A, Pérez-Lozano ML, Gilsanz A, Ruiz-Carpio V, et al. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol. 2013;231:517–31.

    Article  CAS  PubMed  Google Scholar 

  29. Dixit R, Ai XB, Fine A. Derivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry. Development. 2013;140:4398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carmona R, Cano E, Mattiotti A, Gaztambide J, Muñoz-Chápuli R. Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. Plos One. 2013;8:e55890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Satoyoshi R, Aiba N, Yanagihara K, Yashiro M, Tanaka M. Tks5 activation in mesothelial cells creates invasion front of peritoneal carcinomatosis. Oncogene. 2015;34:3176–87.

    Article  CAS  PubMed  Google Scholar 

  32. Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y, et al. Upregulation of cancer-associated myofibroblasts by TGF-β from scirrhous gastric carcinoma cells. Br J Cancer. 2011;105:996–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanaka M, Kuriyama S, Itoh G, Maeda D, Goto A, Tamiya Y, et al. Mesothelial cells create a novel tissue niche that facilitates gastric cancer invasion. Cancer Res. 2017;77:684–95.

    Article  CAS  PubMed  Google Scholar 

  34. Hopkins AM, Pineda AA, Winfree LM, Brown GT, Laukoetter MG, Nusrat A. Organized migration of epithelial cells requires control of adhesion and protrusion through Rho kinase effectors. Am J Physiol-Gastrointest Liver Physiol. 2007;292:G806–G817.

    Article  CAS  PubMed  Google Scholar 

  35. Vearing C, Lee FT, Wimmer-Kleikamp S, Spirkoska V, To C, Stylianou C, et al. Concurrent binding of anti-EphA3 antibody and ephrin-A5 amplifies EphA3 signaling and downstream responses: Potential as EphA3-specific tumor-targeting reagents. Cancer Res. 2005;65:6745–54.

    Article  CAS  PubMed  Google Scholar 

  36. Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, et al. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Res Rev. 2023;43:1141–1200.

    Article  CAS  Google Scholar 

  37. Prydz K, Halstensen TS, Holen HL, Aasheim HC. Ephrin-B3 binds both cell-associated and secreted proteoglycans. Biochemical Biophysical Res Commun. 2018;503:2212–7.

    Article  CAS  Google Scholar 

  38. Kinashi H, Ito Y, Mizuno M, Suzuki Y, Terabayashi T, Nagura F, et al. TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis. J Am Soc Nephrol. 2013;24:1627–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banerjee K, Kerzel T, Bekkhus T, Ferreira SD, Wallmann T, Wallerius M, et al. Report VEGF-C-expressing TAMs rewire the metastatic fate of breast cancer cells. Cell Rep. 2023;42:113507.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Zhang CH, Li LX, Liang XJ, Cheng P, Li Q, et al. Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization. Cell Death Dis. 2021;12:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horie M, Takagane K, Itoh G, Kuriyama S, Yanagihara K, Yashiro M, et al. Exosomes secreted by ST3GAL5high cancer cells promote peritoneal dissemination by establishing a premetastatic microenvironment. Mol Oncol. 2024;18:21–43.

    Article  CAS  PubMed  Google Scholar 

  42. Nakanishi Y, Kang SJ, Kumanogoh A. Crosstalk between axon guidance signaling and bone remodeling. Bone. 2022;157:116305.

    Article  CAS  PubMed  Google Scholar 

  43. Maddigan A, Truitt L, Arsenault R, Freywald T, Allonby O, Dean J, et al. EphB receptors trigger AKT activation and suppress FAS receptor-induced apoptosis in malignant T lymphocytes. J Immunol. 2011;187:5983–94.

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen TM, Arthur A, Hayball JD, Gronthos S. EphB and Ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells. Stem Cells Dev. 2013;22:2751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shelke GV, Yin YN, Jang SC, Lässer C, Wennmalm S, Hoffmann HJ, et al. Endosomal signalling via exosome surface TGFβ-1. J Extracell Vesicles. 2019;8:1650458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30.

    Article  CAS  PubMed  Google Scholar 

  47. Stavropoulou A, Philippou A, Halapas A, Sourla A, Pissimissis N, Koutsilieris M. uPA, uPAR and TGFβ1 expression during early and late post myocardial infarction period in rat myocardium. Vivo. 2010;24:647–52.

    CAS  Google Scholar 

  48. Ran S, Volk-Draper L. Lymphatic endothelial cell progenitors in the tumor microenvironment. Adv Exp Med Biol. 2020;1234:87–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Petrova TV, Koh GY. Organ-specific lymphatic vasculature: from development to pathophysiology. J Exp Med. 2018;215:35–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang YC, Meng WT, Zhang HF, Zhu J, Wang QL, Mou FF, et al. Lymphangiogenesis, a potential treatment target for myocardial injury. Microvascular Res. 2023;145:104442.

    Article  CAS  Google Scholar 

  51. Mou R, Chen K, Zhu PW, Xu QB, Ma L. The Impact of Stem/Progenitor Cells on Lymphangiogenesis in Vascular Disease. Cells. 2022;11:4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. You C, Zhao K, Dammann P, Keyvani K, Kreitschmann-Andermahr I, Sure U, et al. EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol Med. 2017;21:1848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cha B, Geng X, Mahamud MR, Fu JX, Mukherjee A, Kim Y, et al. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes Dev. 2016;30:1454–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hader C, Marlier A, Cantley L. Mesenchymal-epithelial transition in epithelial response to injury: the role of Foxc2. Oncogene. 2010;29:1031–40.

    Article  CAS  PubMed  Google Scholar 

  55. Shimoda Y, Ubukata Y, Handa T, Yokobori T, Watanabe T, Gantumur D, et al. High expression of forkhead box protein C2 is associated with aggressive phenotypes and poor prognosis in clinical hepatocellular carcinoma. Bmc Cancer. 2018;18:597.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mäkinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005;19:397–410.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang YD, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465:483–U108.

    Article  CAS  PubMed  Google Scholar 

  58. Gao B, Guo LJ, Luo DL, Jiang Y, Zhao JJ, Mao CY, et al. Steroid receptor coactivator-1 interacts with NF-κB to increase VEGFC levels in human thyroid cancer. Biosci Rep. 2018;38:Bsr20180394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao XJ, You XL, Huang CAJ, Liu GY, Cheng ZY, Zhang HT. Steroid receptor coactivator-1 (SRC-1) promoted cell metastasis of gastric cancer via VEGFC activator by NF-κB. Crit Rev Eukaryot Gene Expr. 2022;32:21–29.

    Article  PubMed  Google Scholar 

  60. Vachon E, Martin R, Kwok V, Cherepanov V, Chow CW, Doerschuk CM, et al. CD44-mediated phagocytosis induces inside-out activation of complement receptor-3 in murine macrophages. Blood. 2007;110:4492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Bioscience Education and Research Support Center (BERSC) of Akita University for technical assistance. This work was supported by JSPS KAKENHI grants (22H02897, 23K18307 to M. Tanaka, 22K07163 to G. Itoh, 21K07090 to S. Kuriyama, 22H04373 to K. Takagane), Takeda Science Foundation grants (to M. Tanaka and G. Itoh), a Research Grant from the Princess Takamatsu cancer Research Fund (19-25123 to M. Tanaka), and Research Project Program of Joint Usage/Research Center at the Institute of Development, Aging and cancer, Tohoku University (G. Itoh).

Author information

Authors and Affiliations

Authors

Contributions

MT designed the study. MM conceptually contributed to the work. KH, KT, GI, S Kuriyama, MT performed experiments and data analysis. KH, S Koyota, TM, YL, TA and RO performed bioinformatics analysis of scRNA-seq data. KT performed flow cytometric analysis and IHC. MT performed pathological evaluation. MY provided cell materials. KH prepared the manuscript. MT made the final critical revision of the manuscript.

Corresponding author

Correspondence to Masamitsu Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in accordance with the principles of the Declaration of Helsinki principles. This study was approved by the Akita University Ethics Committee (approval number a-1-3175, Akita, Japan) and Osaka City University Ethics Committee (approval number 2756, Osaka, Japan).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, K., Takagane, K., Itoh, G. et al. Cell-cell contact-dependent secretion of large-extracellular vesicles from EFNBhigh cancer cells accelerates peritoneal dissemination. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02783-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02783-8

  • Springer Nature Limited

Navigation