Log in

Mitochondrial calcium uniporter promotes kidney aging in mice through inducing mitochondrial calcium-mediated renal tubular cell senescence

  • Article
  • Published:
Acta Pharmacologica Sinica Submit manuscript

Abstract

Renal tubular epithelial cell senescence plays a critical role in promoting and accelerating kidney aging and age-related renal fibrosis. Senescent cells not only lose their self-repair ability, but also can transform into senescence-associated secretory phenotype (SASP) to trigger inflammation and fibrogenesis. Recent studies show that mitochondrial dysfunction is critical for renal tubular cell senescence and kidney aging, and calcium overload and abnormal calcium-dependent kinase activities are involved in mitochondrial dysfunction-associated senescence. In this study we investigated the role of mitochondrial calcium overload and mitochondrial calcium uniporter (MCU) in kidney aging. By comparing the kidney of 2- and 24-month-old mice, we found calcium overload in renal tubular cells of aged kidney, accompanied by significantly elevated expression of MCU. In human proximal renal tubular cell line HK-2, pretreatment with MCU agonist spermine (10 μM) significantly increased mitochondrial calcium accumulation, and induced the production of reactive oxygen species (ROS), leading to renal tubular cell senescence and age-related kidney fibrosis. On the contrary, pretreatment with MCU antagonist RU360 (10 μM) or calcium chelator BAPTA-AM (10 μM) diminished D-gal-induced ROS generation, restored mitochondrial homeostasis, retarded cell senescence, and protected against kidney aging in HK-2 cells. In a D-gal-induced accelerated aging mice model, administration of BAPTA (100 μg/kg. i.p.) every other day for 8 weeks significantly alleviated renal tubuarl cell senescence and fibrosis. We conclude that MCU plays a key role in promoting renal tubular cell senescence and kidney aging. Targeting inhibition on MCU provides a new insight into the therapeutic strategy against kidney aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Calcium channel is induced in aged kidney and accompanied by dysfunction of calcium regulated activity.
Fig. 2: MCU is induced in aged kidney and accompanied by dysfunction of mitochondria.
Fig. 3: Activation of MCU promotes mitochondrial dysfunction and cellular senescence in cultured renal tubular epithelial cells.
Fig. 4: Inhibition of MCU promotes mitochondrial homeostasis in vitro.
Fig. 5: Inhibition of MCU alleviates cellular senescence in vitro.
Fig. 6: Chelation of calcium preserves mitochondrial function in vitro.
Fig. 7: Chelation of calcium inhibits cellular senescence in vitro.
Fig. 8: Chelation of calcium reduces mitochondrial dysfunction in kidneys in accelerated aging mice.
Fig. 9: Chelation of calcium alleviates renal tubular cell senescence and fibrosis in accelerated aging mice.
Fig. 10: The schematic presentation depicts the potential mechanism that MCU promotes mitochondrial dysfunction and cellular senescence.

Similar content being viewed by others

Data availability

Transcriptomic data presented in this study can be found at NCBI GEO database (GSE262514).

References

  1. United Nations Department of Economic and Social Affairs Population Division. World Population Ageing 2015. 2015; Available from: http://www.un.org/en.

  2. Anderson S, Halter JB, Hazzard WR, Himmelfarb J, Horne FM, Kaysen GA, et al. Prediction, progression, and outcomes of chronic kidney disease in older adults. J Am Soc Nephrol. 2009;20:1199–209.

    Article  CAS  PubMed  Google Scholar 

  3. Liu P, Quinn RR, Lam NN, Elliott MJ, Xu Y, James MT, et al. 5-accounting for age in the definition of chronic kidney disease. JAMA Intern Med. 2021;181:1359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cortes-Canteli M, Iadecola C. Alzheimer’s disease and vascular aging: Jacc focus seminar. J Am Coll Cardiol. 2020;75:942–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Minutolo R, Borrelli S, De Nicola L. Ckd in the elderly: Kidney senescence or blood pressure-related nephropathy? Am J Kidney Dis. 2015;66:184–6.

    Article  PubMed  Google Scholar 

  6. Hommos MS, Glassock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol. 2017;28:2838–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. O’Sullivan ED, Hughes J, Ferenbach DA. Renal aging: Causes and consequences. J Am Soc Nephrol. 2017;28:407–20.

    Article  PubMed  Google Scholar 

  8. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53.

    Article  CAS  PubMed  Google Scholar 

  9. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol. 2017;13:77–89.

    Article  CAS  PubMed  Google Scholar 

  10. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530:184–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, et al. Senescent cells: An emerging target for diseases of ageing. Nat Rev Drug Discov. 2017;16:718–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  13. Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: Relation to aging. Proc Natl Acad Sci USA. 1995;92:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell. 2016;15:999–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int. 2017;92:569–79.

    Article  CAS  PubMed  Google Scholar 

  16. Gallage S, Gil J. Mitochondrial dysfunction meets senescence. Trends Biochem Sci. 2016;41:207–9.

    Article  CAS  PubMed  Google Scholar 

  17. Miwa S, Kashyap S, Chini E, von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 2022;132:e158447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.

    Article  CAS  PubMed  Google Scholar 

  19. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–4.

    Article  CAS  PubMed  Google Scholar 

  20. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23:303–14.

    Article  CAS  PubMed  Google Scholar 

  22. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 2022;18:243–58.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, et al. Wnt/β-catenin/ras signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell. 2019;18:e13004.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martin N, Bernard D. Calcium signaling and cellular senescence. Cell Calcium. 2018;70:16–23.

    Article  CAS  PubMed  Google Scholar 

  25. Wu X, Nguyen BC, Dziunycz P, Chang S, Brooks Y, Lefort K, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465:368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manda KR, Tripathi P, Hsi AC, Ning J, Ruzinova MB, Liapis H, et al. Nfatc1 promotes prostate tumorigenesis and overcomes pten loss-induced senescence. Oncogene. 2016;35:3282–92.

    Article  CAS  PubMed  Google Scholar 

  27. Madreiter-Sokolowski CT, Waldeck-Weiermair M, Bourguignon MP, Villeneuve N, Gottschalk B, Klec C, et al. Enhanced inter-compartmental Ca2+ flux modulates mitochondrial metabolism and apoptotic threshold during aging. Redox Biol. 2019;20:458–66.

    Article  CAS  PubMed  Google Scholar 

  28. Madreiter-Sokolowski CT, Thomas C, Ristow M. Interrelation between ros and Ca2+ in aging and age-related diseases. Redox Biol. 2020;36:101678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiel C, Lallet-Daher H, Gitenay D, Gras B, Le Calve B, Augert A, et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun. 2014;5:3792.

    Article  CAS  PubMed  Google Scholar 

  30. Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ros: A mutual interplay. Redox Biol. 2015;6:260–71.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta. 2009;1787:1309–16.

    Article  CAS  PubMed  Google Scholar 

  32. Huang G, Docampo R. The mitochondrial calcium uniporter interacts with subunit c of the atp synthase of trypanosomes and humans. mBio. 2020;11:e00268–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hubbard MJ, McHugh NJ. Mitochondrial atp synthase f1-beta-subunit is a calcium-binding protein. FEBS Lett. 1996;391:323–9.

    Article  CAS  PubMed  Google Scholar 

  34. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, atp, and ros: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287:C817–33.

    Article  CAS  PubMed  Google Scholar 

  35. De Marchi E, Bonora M, Giorgi C, Pinton P. The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium. 2014;56:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al. Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler Thromb Vasc Biol. 2017;37:2322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev. 2022;102:893–992.

    Article  CAS  PubMed  Google Scholar 

  38. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–78.

    Article  CAS  PubMed  Google Scholar 

  39. Marchi S, Corricelli M, Branchini A, Vitto VAM, Missiroli S, Morciano G, et al. Akt-mediated phosphorylation of micu1 regulates mitochondrial Ca2+ levels and tumor growth. EMBO J. 2019;38:e99435.

    Article  PubMed  Google Scholar 

  40. Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, et al. Architecture of the mitochondrial calcium uniporter. Nature. 2016;533:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patron M, Sprenger HG, Langer T. M-aaa proteases, mitochondrial calcium homeostasis and neurodegeneration. Cell Res. 2018;28:296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li S, Chen J, Liu M, Chen Y, Wu Y, Li Q, et al. Protective effect of hint2 on mitochondrial function via repressing mcu complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic Res Cardiol. 2021;116:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ingram AJ, James L, Ly H, Thai K, Scholey JW. Stretch activation of jun n-terminal kinase/stress-activated protein kinase in mesangial cells. Kidney Int. 2000;58:1431–9.

    Article  CAS  PubMed  Google Scholar 

  44. Beard JR, Officer A, de Carvalho IA, Sadana R, Pot AM, Michel JP, et al. The world report on ageing and health: A policy framework for healthy ageing. Lancet. 2016;387:2145–54.

    Article  PubMed  Google Scholar 

  45. Rudnicka E, Napierala P, Podfigurna A, Meczekalski B, Smolarczyk R, Grymowicz M. The world health organization (who) approach to healthy ageing. Maturitas. 2020;139:6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sis B, Tasanarong A, Khoshjou F, Dadras F, Solez K, Halloran PF. Accelerated expression of senescence associated cell cycle inhibitor p16ink4a in kidneys with glomerular disease. Kidney Int. 2007;71:218–26.

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Yang JR, He YN, Cai GY, Zhang JG, Lin LR, et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin a (IgA) nephropathy. Transl Res. 2012;159:454–63.

    Article  CAS  PubMed  Google Scholar 

  48. Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: An update. Cell Metab. 2017;25:57–71.

    Article  CAS  PubMed  Google Scholar 

  49. Luo C, Zhou S, Zhou Z, Liu Y, Yang L, Liu J, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol. 2018;29:1238–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma X, Warnier M, Raynard C, Ferrand M, Kirsh O, Defossez PA, et al. The nuclear receptor rxra controls cellular senescence by regulating calcium signaling. Aging Cell. 2018;17:e12831.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ziegler DV, Vindrieux D, Goehrig D, Jaber S, Collin G, Griveau A, et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat Commun. 2021;12:720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cooper LL, Li W, Lu Y, Centracchio J, Terentyeva R, Koren G, et al. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts. J Physiol. 2013;591:5895–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruiz-Meana M, Minguet M, Bou-Teen D, Miro-Casas E, Castans C, Castellano J, et al. Ryanodine receptor glycation favors mitochondrial damage in the senescent heart. Circulation. 2019;139:949–64.

    Article  CAS  PubMed  Google Scholar 

  54. Sileikyte J, Forte M. The mitochondrial permeability transition in mitochondrial disorders. Oxid Med Cell Longev. 2019;2019:3403075.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Calvo-Rodriguez M, Bacskai BJ. Mitochondria and calcium in Alzheimer’s disease: From cell signaling to neuronal cell death. Trends Neurosci. 2021;44:136–51.

    Article  CAS  PubMed  Google Scholar 

  56. Gao P, Jiang Y, Wu H, Sun F, Li Y, He H, et al. Inhibition of mitochondrial calcium overload by Sirt3 prevents obesity- or age-related whitening of brown adipose tissue. Diabetes. 2020;69:165–80.

    Article  CAS  PubMed  Google Scholar 

  57. Kwong JQ, Huo J, Bround MJ, Boyer JG, Schwanekamp JA, Ghazal N, et al. The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight. 2018;3:e121689.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (82225010, 82070707); and Guangdong Provincial Clinical Research Center for Kidney Disease (2020B1111170013).

Author information

Authors and Affiliations

Authors

Contributions

LLZ conceived the research and designed the experiments. YBX, WYH, XL, SZ, XXW, XLL and LLZ performed the experiments and contributed to acquisition and analysis of data. YBX created the figures and prepared the materials of this study. YBX and LLZ wrote the manuscript. All authors contributed to the article and approved the final manuscript.

Corresponding author

Correspondence to Li-li Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, Yb., Huang, Wy., Ling, X. et al. Mitochondrial calcium uniporter promotes kidney aging in mice through inducing mitochondrial calcium-mediated renal tubular cell senescence. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01298-5

  • Springer Nature Singapore Pte Ltd.

Keywords

Navigation