Log in

PIM1/NF-κB/CCL2 blockade enhances anti-PD-1 therapy response by modulating macrophage infiltration and polarization in tumor microenvironment of NSCLC

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Elevated infiltration of tumor-associated macrophages (TAMs) drives tumor progression and correlates with poor prognosis for various tumor types. Our research identifies that the ablation of the Pim-1 proto-oncogene (PIM1) in non-small cell lung cancer (NSCLC) suppresses TAM infiltration and prevents them from polarizing toward the M2 phenotype, thereby resha** the tumor immune microenvironment (TME). The predominant mechanism through which PIM1 exerts its impact on macrophage chemotaxis and polarization involves CC motif chemokine ligand 2 (CCL2). The expression level of PIM1 is positively correlated with high CCL2 expression in NSCLC, conferring a worse overall patient survival. Mechanistically, PIM1 deficiency facilitates the reprogramming of TAMs by targeting nuclear factor kappa beta (NF-κB) signaling and inhibits CCL2 transactivation by NSCLC cells. The decreased secretion of CCL2 impedes TAM accumulation and their polarization toward a pro-tumoral phenotype. Furthermore, Dual blockade of Pim1 and PD-1 collaboratively suppressed tumor growth, repolarized macrophages, and boosted the efficacy of anti-PD-1 antibody. Collectively, our findings elucidate the pivotal role of PIM1 in orchestrating TAMs within the TME of NSCLC and highlight the potential of PIM1 inhibition as a strategy for enhancing the efficacy of cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Altering PIM1 levels within tumors influences macrophage chemotaxis and polarization in the TME.
Fig. 2: Regulation of tumor-infiltrating macrophages via PIM1 is dependent on CCL2 in tumors.
Fig. 3: Clinical correlation analysis of PIM1 and CCL2 in NSCLC samples.
Fig. 4: The role of PIM1 in chemotaxis and polarization of macrophages is mediated by CCL2.
Fig. 5: CCL2 expression in lung adenocarcinoma is regulated by PIM1 via the NF-κB pathway.
Fig. 6: PIM1-mediated p65 phosphorylation stimulates CCL2 secretion through promoter binding.
Fig. 7: Inhibition of Pim1 synergizes with PD-1 blockade to suppress tumor progression in a syngeneic mouse model.

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, et al. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol. 2022;13:844142.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen D, Zhang X, Li Z, Zhu B. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 2021;11:1016–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol. 2002;3:999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8:369–80.

    Article  CAS  PubMed  Google Scholar 

  5. **ang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 2021;6:75.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.

    Article  CAS  PubMed  Google Scholar 

  7. Dai X, Lu L, Deng S, Meng J, Wan C, Huang J, et al. USP7 targeting modulates anti-tumor immune response by reprogramming Tumor-associated Macrophages in Lung Cancer. Theranostics. 2020;10:9332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6:3282–9.

    CAS  PubMed  Google Scholar 

  10. Valković T, Fuckar D, Stifter S, Matusan K, Hasan M, Dobrila F, et al. Macrophage level is not affected by monocyte chemotactic protein-1 in invasive ductal breast carcinoma. J cancer Res Clin Oncol. 2005;131:453–8.

    Article  PubMed  Google Scholar 

  11. Sunakawa Y, Stremitzer S, Cao S, Zhang W, Yang D, Wakatsuki T, et al. Association of variants in genes encoding for macrophage-related functions with clinical outcome in patients with locoregional gastric cancer. Ann Oncol. 2015;26:332–9.

    Article  CAS  PubMed  Google Scholar 

  12. Xu M, Wang Y, **a R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif. 2021;54:e13115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. ** L, Guo Y, Mao W, Wang J, ** L, Liu X, et al. Total glucosides of paeony inhibit breast cancer growth by inhibiting TAMs infiltration through NF-κB/CCL2 signaling. Phytomedicine. 2022;104:154307.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, et al. Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene. 2019;38:5792–804.

    Article  CAS  PubMed  Google Scholar 

  15. Yoon SB, Hong H, Lim HJ, Choi JH, Choi YP, Seo SW, et al. A novel IRAK4/PIM1 inhibitor ameliorates rheumatoid arthritis and lymphoid malignancy by blocking the TLR/MYD88-mediated NF-κB pathway. Acta Pharmaceutica Sin B. 2023;13:1093–109.

    Article  CAS  Google Scholar 

  16. Pham TX, Lee J, Guan J, Caporarello N, Meridew JA, Jones DL, et al. Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis. JCI Insight. 2022;7:e153672.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li H, **e L, Zhu L, Li Z, Wang R, Liu X, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun. 2022;13:5866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.

    Article  CAS  PubMed  Google Scholar 

  20. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Cell Death Differ. 2010;17:689–98.

    Article  CAS  PubMed  Google Scholar 

  22. Aho TL, Lund RJ, Ylikoski EK, Matikainen S, Lahesmaa R, Koskinen PJ. Expression of human pim family genes is selectively up-regulated by cytokines promoting T helper type 1, but not T helper type 2, cell differentiation. Immunology. 2005;116:82–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol. 2022;43:757–75.

    Article  CAS  PubMed  Google Scholar 

  24. Wolfsberger J, Sakil HAM, Zhou L, van Bree N, Baldisseri E, de Souza Ferreira S, et al. TAp73 represses NF-κB-mediated recruitment of tumor-associated macrophages in breast cancer. Proc Natl Acad Sci USA. 2021;118:e2017089118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharmaceutica Sin B. 2020;10:2156–70.

    Article  CAS  Google Scholar 

  27. Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588–602.e510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Investig. 2016;126:4157–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nie Y, Huang H, Guo M, Chen J, Wu W, Li W, et al. Breast Phyllodes Tumors Recruit and Repolarize Tumor-Associated Macrophages via Secreting CCL5 to Promote Malignant Progression, Which Can Be Inhibited by CCR5 Inhibition Therapy. Clin Cancer Res. 2019;25:3873–86.

    Article  CAS  PubMed  Google Scholar 

  30. Annamalai RT, Turner PA, Carson WF 4th, Levi B, Kunkel S, Stegemann JP. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials. 2018;161:216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  32. Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, et al. Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metab. 2016;24:701–15.

    Article  CAS  PubMed  Google Scholar 

  33. Lievense LA, Cornelissen R, Bezemer K, Kaijen-Lambers ME, Hegmans JP, Aerts JG. Pleural Effusion of Patients with Malignant Mesothelioma Induces Macrophage-Mediated T Cell Suppression. J Thorac Oncol. 2016;11:1755–64.

    Article  PubMed  Google Scholar 

  34. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Investig. 2011;121:4015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li W, Wu F, Zhao S, Shi P, Wang S, Cui D. Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine Growth Factor Rev. 2022;67:49–57.

    Article  CAS  PubMed  Google Scholar 

  37. Casillas AL, Chauhan SS, Toth RK, Sainz AG, Clements AN, Jensen CC, et al. Direct phosphorylation and stabilization of HIF-1α by PIM1 kinase drives angiogenesis in solid tumors. Oncogene. 2021;40:5142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao L, Wang F, Li S, Wang X, Huang D, Jiang R. PIM1 kinase promotes cell proliferation, metastasis and tumor growth of lung adenocarcinoma by potentiating the c-MET signaling pathway. Cancer Lett. 2019;444:116–26.

    Article  CAS  PubMed  Google Scholar 

  39. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, et al. CCL2 Produced by the Glioma Microenvironment Is Essential for the Recruitment of Regulatory T Cells and Myeloid-Derived Suppressor Cells. Cancer Res. 2016;76:5671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol. 2013;14:211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Messmer MN, Netherby CS, Banik D, Abrams SI. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother. 2015;64:1–13.

    Article  CAS  PubMed  Google Scholar 

  42. Kamran N, Kadiyala P, Saxena M, Candolfi M, Li Y, Moreno-Ayala MA, et al. Immunosuppressive Myeloid Cells’ Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. Mol Ther. 2017;25:232–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 2018;67:1112–23.

    Article  CAS  PubMed  Google Scholar 

  45. Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, et al. Tumor-Derived CCL2 Mediates Resistance to Radiotherapy in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2017;23:137–48.

    Article  CAS  PubMed  Google Scholar 

  46. Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515:130–3.

    Article  CAS  PubMed  Google Scholar 

  47. Mino-Kenudson M, Schalper K, Cooper W, Dacic S, Hirsch FR, Jain D, et al. Predictive Biomarkers for Immunotherapy in Lung Cancer: Perspective From the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2022;17:1335–54.

    Article  CAS  PubMed  Google Scholar 

  48. Dorrington MG, Fraser IDC. NF-κB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front Immunol. 2019;10:705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012;22:557–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tian** Medical University Cancer Institute & Hospital for providing us with pathological specimens.

Funding

This present research was funded by the National Natural Science Foundation of China (No. 82172620 for Richeng Jiang and No. 82172635 for Dingzhi Huang).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RCJ, DZH. Methodology: XQC, JZ, YHW, XYW, KDC, QC. Investigation: XQC, JZ, YHW. Acquisition of data: XQC, JZ, YHW, XYW. Visualization: XQC, XYW, KDC, QC. Funding acquisition: RCJ, DZH. Project administration: RCJ, DZH. Supervision: XYW, RCJ, DZH. Writing - original draft: XQC. Writing - review & editing or revision: XQC, JZ, YHW.

Corresponding authors

Correspondence to Dingzhi Huang or Richeng Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This research involving human subjects or human data received formal authorization from the Cancer Institute and Hospital Research Ethics Committee, following the World Medical Association’s Declaration of Helsinki guidelines (approval no.bc2023134). Informed consent was obtained from all participants after the nature and possible consequences of the studies were explained. All animal experiments were approved by the Institutional Animal Care and Use Committee of the Tian** Medical University Cancer Institute and Hospital (AE-2022026).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhou, J., Wang, Y. et al. PIM1/NF-κB/CCL2 blockade enhances anti-PD-1 therapy response by modulating macrophage infiltration and polarization in tumor microenvironment of NSCLC. Oncogene (2024). https://doi.org/10.1038/s41388-024-03100-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03100-6

  • Springer Nature Limited

Navigation