Log in

Distinctively different human neurobiological responses after trauma exposure and implications for posttraumatic stress disorder subty**

  • Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

Trauma elicits various adaptive and maladaptive responses among all exposed people. There may be distinctively different patterns of adaptation/maladaptation or types according to neurobiological predisposition. The present study aims to dissect the heterogeneity of posttraumatic conditions in order to identify clinically meaningful subtypes in recently traumatized individuals and evaluate their neurobiological correlates and long-term prognosis. We implemented a data-driven classification approach in both discovery (n = 480) and replication (n = 220) datasets of trauma-exposed and trauma-unexposed individuals based on the clinical data across a wide range of assessments. Subtype-specific patterns of functional connectivity in higher-order cortical networks, longitudinal clinical outcomes, and changes in functional connectivity were also evaluated. We identified four distinct and replicable subtypes for trauma-exposed individuals according to posttraumatic stress symptoms. Each subtype was distinct in clinical characteristics, brain functional organization, and long-term trajectories for posttraumatic symptoms. These findings help enhance current understanding of mechanisms underlying the human-specific heterogeneous responses to trauma. Furthermore, this study contributes data towards the development of improved interventions, including targeting of subtype-specific characteristics, for trauma-exposed individuals and those with PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Proposed subtypes for recently traumatized individuals and their symptom characteristics.
Fig. 2: Trauma subtype-specific functional connectivity alterations at time 1 assessment.
Fig. 3: Subtype-specific trajectories of traditional symptoms of PTSD.
Fig. 4: Subtype-specific trajectories of dimensional symptoms and functional connectivity.

Similar content being viewed by others

References

  1. Lyoo IK, Kim JE, Yoon SJ, Hwang J, Bae S, Kim DJ. The neurobiological role of the dorsolateral prefrontal cortex in recovery from trauma. Longitudinal brain imaging study among survivors of the South Korean subway disaster. Arch Gen Psychiatry. 2011;68:701–13.

    Article  PubMed  Google Scholar 

  2. Fink DS, Lowe S, Cohen GH, Sampson LA, Ursano RJ, Gifford RK, et al. Trajectories of posttraumatic stress symptoms after civilian or deployment traumatic event experiences. Psychol Trauma. 2017;9:138–46.

    Article  PubMed  Google Scholar 

  3. Andersen SB, Karstoft KI, Bertelsen M, Madsen T. Latent trajectories of trauma symptoms and resilience: the 3-year longitudinal prospective USPER study of Danish veterans deployed in Afghanistan. J Clin Psychiatry. 2014;75:1001–8.

    Article  PubMed  Google Scholar 

  4. Bonanno GA, Mancini AD, Horton JL, Powell TM, Leardmann CA, Boyko EJ, et al. Trajectories of trauma symptoms and resilience in deployed U.S. military service members: prospective cohort study. Br J Psychiatry. 2012;200:317–23.

    Article  PubMed  Google Scholar 

  5. Schultebraucks K, Shalev AY, Michopoulos V, Grudzen CR, Shin SM, Stevens JS, et al. A validated predictive algorithm of post-traumatic stress course following emergency department admission after a traumatic stressor. Nat Med. 2020;26:1084–8.

    Article  CAS  PubMed  Google Scholar 

  6. Schultebraucks K, Qian M, Abu-Amara D, Dean K, Laska E, Siegel C, et al. Pre-deployment risk factors for PTSD in active-duty personnel deployed to Afghanistan: a machine-learning approach for analyzing multivariate predictors. Mol Psychiatry. 2020;26:5011–22.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stevens JS, Harnett NG, Lebois LAM, van Rooij SJH, Ely TD, Roeckner A, et al. Brain-based biotypes of psychiatric vulnerability in the acute aftermath of trauma. Am J Psychiatry. 2021;178:1037–49.

    Article  PubMed  PubMed Central  Google Scholar 

  8. DiMauro J, Carter S, Folk JB, Kashdan TB. A historical review of trauma-related diagnoses to reconsider the heterogeneity of PTSD. J Anxiety Disord. 2014;28:774–86.

    Article  PubMed  Google Scholar 

  9. Koek RJ, Schwartz HN, Scully S, Langevin JP, Spangler S, Korotinsky A, et al. Treatment-refractory posttraumatic stress disorder (TRPTSD): a review and framework for the future. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:170–218.

    Article  PubMed  Google Scholar 

  10. Jakupcak M, Conybeare D, Phelps L, Hunt S, Holmes HA, Felker B, et al. Anger, hostility, and aggression among Iraq and Afghanistan War veterans reporting PTSD and subthreshold PTSD. J Trauma Stress. 2007;20:945–54.

    Article  PubMed  Google Scholar 

  11. Orth U, Wieland E. Anger, hostility, and posttraumatic stress disorder in trauma-exposed adults: a meta-analysis. J Consult Clin Psychol. 2006;74:698–706.

    Article  PubMed  Google Scholar 

  12. McNally RJ. Cognitive abnormalities in post-traumatic stress disorder. Trends Cogn Sci. 2006;10:271–7.

    Article  PubMed  Google Scholar 

  13. Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry. 2005;62:273–81.

    Article  PubMed  Google Scholar 

  14. Weathers FW, Bovin MJ, Lee DJ, Sloan DM, Schnurr PP, Kaloupek DG, et al. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol Assess. 2018;30:383–95.

    Article  PubMed  Google Scholar 

  15. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption-II. Addiction. 1993;88:791–804.

    Article  CAS  PubMed  Google Scholar 

  17. Barratt E. Impulsiveness and aggression. In: Monahan J, Steadman H, editors. Violence and mental disorder: Developments in risk assessment. Chicago and London: The University of Chicago Press; 1994, pp 61–79.

  18. Spielberger C. Manual for the stale-trait anger expression inventory (STAXI). Odessa: Psychological Assessment Resources; 1988.

  19. Wechsler D. Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). San Antonio: NCS Pearson; 2008.

  20. Strauss E, Sherman EM, Spreen O. A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press; 2006.

  21. Reitan RM, Wolfson D. The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tuscon: Neuropsychology press; 1985.

  22. Cattell RB. The scree test for the number of factors. Multivar Behav Res. 1966;1:245–76.

    Article  CAS  Google Scholar 

  23. Kaiser HF. The application of electronic computers to factor analysis. Educ Psychol Meas. 1960;20:141–51.

    Article  Google Scholar 

  24. Hopkins B, Skellam JG. A new method for determining the type of distribution of plant individuals. Ann Bot. 1954;18:213–27.

    Article  Google Scholar 

  25. Banerjee A, Dave RN. Validating clusters using the Hopkins statistic. IEEE International Conference on Fuzzy Systems. 2004:149–53.

  26. Ward JH Jr. Hierarchical grou** to optimize an objective function. J Am Stat Assoc. 1963;58:236–44.

    Article  Google Scholar 

  27. Hennig C. Cluster-wise assessment of cluster stability. Comput Stat Data. 2007;52:258–71.

    Article  Google Scholar 

  28. Halkidi M, Batistakis Y, Vazirgiannis M. On clustering validation techniques. J Intell Inf Sys. 2001;17:107–45.

    Article  Google Scholar 

  29. Xu J, Van Dam NT, Feng C, Luo Y, Ai H, Gu R, et al. Anxious brain networks: A coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci Biobehav Rev. 2019;96:21–30.

    Article  PubMed  Google Scholar 

  30. Langner R, Leiberg S, Hoffstaedter F, Eickhoff SB. Towards a human self-regulation system: Common and distinct neural signatures of emotional and behavioural control. Neurosci Biobehav Rev. 2018;90:400–10.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nicholson AA, Harricharan S, Densmore M, Neufeld RWJ, Ros T, McKinnon MC, et al. Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. Neuroimage Clin. 2020;27:102262.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patel R, Spreng RN, Shin LM, Girard TA. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev. 2012;36:2130–42.

    Article  PubMed  Google Scholar 

  33. Akiki TJ, Averill CL, Abdallah CG. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr Psychiatry Rep. 2017;19:81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peterson A, Thome J, Frewen P, Lanius RA. Resting-state neuroimaging studies: a new way of identifying differences and similarities among the anxiety disorders? Can J Psychiatry. 2014;59:294–300.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Westfall PH, Young SS. Resampling-based multiple testing: Examples and methods for p-value adjustment. New York: John Wiley & Sons; 1993.

  36. Benjamini Y, Hochberg Y. Controlling for the false discovery rate: A practical and power approach to multiple testing. J R Stat Soc. 1995;57:289–300.

    Google Scholar 

  37. Shalev A, Liberzon I, Marmar C. Post-traumatic stress disorder. N. Engl J Med. 2017;376:2459–9.

    Article  PubMed  Google Scholar 

  38. Moreno-López L, Ioannidis K, Askelund AD, Smith AJ, Schueler K, van Harmelen AL. The resilient emotional brain: A sco** review of the medial prefrontal cortex and limbic structure and function in resilient adults with a history of childhood maltreatment. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:392–402.

    PubMed  Google Scholar 

  39. Insana SP, Banihashemi L, Herringa RJ, Kolko DJ, Germain A. Childhood maltreatment is associated with altered frontolimbic neurobiological activity during wakefulness in adulthood. Dev Psychopathol. 2016;28:551–64.

    Article  PubMed  Google Scholar 

  40. Rutter M. Resilience as a dynamic concept. Dev Psychopathol. 2012;24:335–44.

    Article  PubMed  Google Scholar 

  41. Kalisch R, Cramer AOJ, Binder H, Fritz J, Leertouwer I, Lunansky G, et al. Deconstructing and reconstructing resilience: a dynamic network approach. Perspect Psychol Sci. 2019;14:765–77.

    Article  PubMed  Google Scholar 

  42. Fischer AS, Keller CJ, Etkin A. The clinical applicability of functional connectivity in depression: Pathways toward more targeted intervention. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:262–70.

    PubMed  Google Scholar 

  43. Blanco C, Xu Y, Brady K, Pérez-Fuentes G, Okuda M, Wang S. Comorbidity of posttraumatic stress disorder with alcohol dependence among US adults: results from National Epidemiological Survey on Alcohol and Related Conditions. Drug Alcohol Depend. 2013;132:630–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Elbogen EB, Wagner HR, Fuller SR, Calhoun PS, Kinneer PM, Beckham JC. Correlates of anger and hostility in Iraq and Afghanistan war veterans. Am J Psychiatry. 2010;167:1051–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102:9673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McCarthy H, Skokauskas N, Mulligan A, Donohoe G, Mullins D, Kelly J, et al. Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood. JAMA Psychiatry. 2013;70:1329–37.

    Article  PubMed  Google Scholar 

  47. Fassbender C, Zhang H, Buzy WM, Cortes CR, Mizuiri D, Beckett L, et al. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res. 2009;1273:114–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Freeman SM, Clewett DV, Bennett CM, Kiehl KA, Gazzaniga MS, Miller MB. The posteromedial region of the default mode network shows attenuated task-induced deactivation in psychopathic prisoners. Neuropsychology. 2015;29:493–500.

    Article  PubMed  Google Scholar 

  49. Lu FM, Zhou JS, Wang XP, **ang YT, Yuan Z. Short- and long-range functional connectivity density alterations in adolescents with pure conduct disorder at resting-state. Neuroscience. 2017;351:96–107.

    Article  CAS  PubMed  Google Scholar 

  50. Han DH, Kim SM, Bae S, Renshaw PF, Anderson JS. A failure of suppression within the default mode network in depressed adolescents with compulsive internet game play. J Affect Disord. 2016;194:57–64.

    Article  PubMed  Google Scholar 

  51. Zhu X, Cortes CR, Mathur K, Tomasi D, Momenan R. Model-free functional connectivity and impulsivity correlates of alcohol dependence: a resting-state study. Addict Biol. 2017;22:206–17.

    Article  PubMed  Google Scholar 

  52. van Zuiden M, Kavelaars A, Rademaker AR, Vermetten E, Heijnen CJ, Geuze E. A prospective study on personality and the cortisol awakening response to predict posttraumatic stress symptoms in response to military deployment. J Psychiatr Res. 2011;45:713–9.

    Article  PubMed  Google Scholar 

  53. Marshall RE, Milligan-Saville JS, Mitchell PB, Bryant RA, Harvey SB. A systematic review of the usefulness of pre-employment and pre-duty screening in predicting mental health outcomes amongst emergency workers. Psychiatry Res. 2017;253:129–37.

    Article  PubMed  Google Scholar 

  54. Macmanus D, Dean K, Jones M, Rona RJ, Greenberg N, Hull L, et al. Violent offending by UK military personnel deployed to Iraq and Afghanistan: a data linkage cohort study. Lancet. 2013;381:907–17.

    Article  PubMed  Google Scholar 

  55. Bramsen I, Dirkzwager AJ, van der Ploeg HM. Predeployment personality traits and exposure to trauma as predictors of posttraumatic stress symptoms: a prospective study of former peacekeepers. Am J Psychiatry. 2000;157:1115–9.

    Article  CAS  PubMed  Google Scholar 

  56. Schnurr PP, Friedman MJ, Rosenberg SD. Premilitary MMPI scores as predictors of combat-related PTSD symptoms. Am J Psychiatry. 1993;150:479–83.

    Article  CAS  PubMed  Google Scholar 

  57. Gil S, Caspi Y. Personality traits, co** style, and perceived threat as predictors of posttraumatic stress disorder after exposure to a terrorist attack: a prospective study. Psychosom Med. 2006;68:904–9.

    Article  PubMed  Google Scholar 

  58. Koch SB, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress Anxiety. 2016;33:592–605.

    Article  PubMed  Google Scholar 

  59. Falconer E, Bryant R, Felmingham KL, Kemp AH, Gordon E, Peduto A, et al. The neural networks of inhibitory control in posttraumatic stress disorder. J Psychiatry Neurosci. 2008;33:413–22.

    PubMed  PubMed Central  Google Scholar 

  60. Weber DL, Clark CR, McFarlane AC, Moores KA, Morris P, Egan GF. Abnormal frontal and parietal activity during working memory updating in post-traumatic stress disorder. Psychiatry Res. 2005;140:27–44.

    Article  PubMed  Google Scholar 

  61. Liberzon I, Abelson JL. Context processing and the neurobiology of post-traumatic stress disorder. Neuron. 2016;92:14–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Galea S, Nandi A, Vlahov D. The epidemiology of post-traumatic stress disorder after disasters. Epidemiol Rev. 2005;27:78–91.

    Article  PubMed  Google Scholar 

  63. Solomon Z, Mikulincer M. Trajectories of PTSD: a 20-year longitudinal study. Am J Psychiatry. 2006;163:659–66.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partly supported by the National Research Foundation of Korea grants funded by the Ministry of Science and ICT (2020M3E5D9080555 to IKL) and funded by the Ministry of Education (2020R1A6A1A03043528 to IKL). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SY and IKL. conceptualized and designed the study. SL, EN, TDK, HH, EH, RYK, YS, HL, and CS performed the research and participated in data acquisition. SL, SY, EN, TDK, HH, EH, RYK, YS, HL, CS, and IKL analyzed the data and interpreted the results. SL, SY, and IKL drafted the manuscript. All authors revised and reviewed the manuscript.

Corresponding author

Correspondence to In Kyoon Lyoo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Yoon, S., Namgung, E. et al. Distinctively different human neurobiological responses after trauma exposure and implications for posttraumatic stress disorder subty**. Mol Psychiatry 28, 2964–2974 (2023). https://doi.org/10.1038/s41380-023-01995-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-01995-3

  • Springer Nature Limited

Navigation