Log in

Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force

  • Article
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Abstract

Tim23, the central subunit of the TIM23 protein-translocation complex, forms a voltage-gated channel in the mitochondrial inner membrane (MIM), an energy-conserving membrane that generates a proton-motive force to drive vital processes. Using high-resolution fluorescence map** of a channel-facing transmembrane segment (TMS2) of Tim23 from Saccharomyces cerevisiae, we demonstrate that changes in the energized state of the MIM cause marked structural alterations in the channel region. In an energized membrane, TMS2 forms a continuous α-helix that is inaccessible to the aqueous intermembrane space (IMS). Upon depolarization, the helical periodicity of TMS2 is disrupted, and the channel becomes exposed to the IMS. Kinetic measurements confirm that changes in TMS2 conformation coincide with depolarization. These results reveal how the energized state of the membrane drives functionally relevant structural dynamics in membrane proteins coupled to processes such as channel gating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Figure 1: CCCP-coupled changes in Δψm and TIM23-complex transport activity.
Figure 2: Fluorescence properties of probes along the Tim23 TMS2 helical axis.
Figure 3: Analysis of NBD-detected structural changes with increasing depolarization.
Figure 4: IASD labeling tests for the exposure of key Tim23 sites to the IMS.
Figure 5: Time-course measurements of NBD-detected structural changes and membrane depolarization.
Figure 6: Summary of Δψm-coupled structural changes in Tim23 TMS2 and working model.

Similar content being viewed by others

References

  1. Loew, L.M., Tuft, R.A., Carrington, W. & Fay, F.S. Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys. J. 65, 2396–2407 (1993).

    Article  CAS  Google Scholar 

  2. Wang, L. Measurements and implications of the membrane dipole potential. Annu. Rev. Biochem. 81, 615–635 (2012).

    Article  CAS  Google Scholar 

  3. Demchenko, A.P. & Yesylevskyy, S.O. Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem. Phys. Lipids 160, 63–84 (2009).

    Article  CAS  Google Scholar 

  4. Hille, B. Ion Channels of Excitable Membranes (Sinauer, 2001).

  5. Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    Article  CAS  Google Scholar 

  6. Endo, T., Yamano, K. & Kawano, S. Structural insight into the mitochondrial protein import system. Biochim. Biophys. Acta 1808, 955–970 (2011).

    Article  CAS  Google Scholar 

  7. Gebert, N., Ryan, M.T., Pfanner, N., Wiedemann, N. & Stojanovski, D. Mitochondrial protein import machineries and lipids: a functional connection. Biochim. Biophys. Acta 1808, 1002–1011 (2011).

    Article  CAS  Google Scholar 

  8. Marom, M., Azem, A. & Mokranjac, D. Understanding the molecular mechanism of protein translocation across the mitochondrial inner membrane: still a long way to go. Biochim. Biophys. Acta 1808, 990–1001 (2011).

    Article  CAS  Google Scholar 

  9. Alder, N.N. Biogenesis of lipids and proteins within biological membranes. in The Structure of Biological Membranes (ed. Yeagle, P.L.) 315–377 (CRC, 2011).

  10. Rassow, J., Hartl, F.U., Guiard, B., Pfanner, N. & Neupert, W. Polypeptides traverse the mitochondrial envelope in an extended state. FEBS Lett. 275, 190–194 (1990).

    Article  CAS  Google Scholar 

  11. Geissler, A. et al. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111, 507–518 (2002).

    Article  CAS  Google Scholar 

  12. Mokranjac, D. et al. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J. 22, 816–825 (2003).

    Article  CAS  Google Scholar 

  13. Truscott, K.N. et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol. 8, 1074–1082 (2001).

    Article  CAS  Google Scholar 

  14. Yamamoto, H. et al. Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111, 519–528 (2002).

    Article  CAS  Google Scholar 

  15. Marom, M. et al. Direct interaction of mitochondrial targeting presequences with purified components of the TIM23 protein complex. J. Biol. Chem. 286, 43809–43815 (2011).

    Article  CAS  Google Scholar 

  16. Schulz, C. et al. Tim50's presequence receptor domain is essential for signal driven transport across the TIM23 complex. J. Cell Biol. 195, 643–656 (2011).

    Article  CAS  Google Scholar 

  17. Gebert, M. et al. Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes. J. Cell Biol. 197, 595–604 (2012).

    Article  CAS  Google Scholar 

  18. Chacinska, A. et al. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829 (2005).

    Article  CAS  Google Scholar 

  19. Chacinska, A. et al. Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting. Mol. Cell Biol. 30, 307–318 (2010).

    Article  CAS  Google Scholar 

  20. Mokranjac, D., Popov-Celeketic, D., Hell, K. & Neupert, W. Role of Tim21 in mitochondrial translocation contact sites. J. Biol. Chem. 280, 23437–23440 (2005).

    Article  CAS  Google Scholar 

  21. Tamura, Y. et al. Tim23-Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import. J. Cell Biol. 184, 129–141 (2009).

    Article  CAS  Google Scholar 

  22. van der Laan, M. et al. A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr. Biol. 16, 2271–2276 (2006).

    Article  CAS  Google Scholar 

  23. Wiedemann, N., van der Laan, M., Hutu, D.P., Rehling, P. & Pfanner, N. Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J. Cell Biol. 179, 1115–1122 (2007).

    Article  CAS  Google Scholar 

  24. Glick, B.S. et al. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69, 809–822 (1992).

    Article  CAS  Google Scholar 

  25. Botelho, S.C. et al. TIM23-mediated insertion of transmembrane α-helices into the mitochondrial inner membrane. EMBO J. 30, 1003–1011 (2011).

    Article  CAS  Google Scholar 

  26. van der Laan, M. et al. Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat. Cell Biol. 9, 1152–1159 (2007).

    Article  CAS  Google Scholar 

  27. Martin, J., Mahlke, K. & Pfanner, N. Role of an energized inner membrane in mitochondrial protein import: Δψ drives the movement of presequences. J. Biol. Chem. 266, 18051–18057 (1991).

    CAS  PubMed  Google Scholar 

  28. Alder, N.N., Jensen, R.E. & Johnson, A.E. Fluorescence map** of mitochondrial TIM23 complex reveals a water-facing, substrate-interacting helix surface. Cell 134, 439–450 (2008).

    Article  CAS  Google Scholar 

  29. Lohret, T.A., Jensen, R.E. & Kinnally, K.W. Tim23, a protein import component of the mitochondrial inner membrane, is required for normal activity of the multiple conductance channel, MCC. J. Cell Biol. 137, 377–386 (1997).

    Article  CAS  Google Scholar 

  30. Martinez-Caballero, S., Grigoriev, S.M., Herrmann, J.M., Campo, M.L. & Kinnally, K.W. Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J. Biol. Chem. 282, 3584–3593 (2007).

    Article  CAS  Google Scholar 

  31. Bauer, M.F., Sirrenberg, C., Neupert, W. & Brunner, M. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87, 33–41 (1996).

    Article  CAS  Google Scholar 

  32. Meier, S., Neupert, W. & Herrmann, J.M. Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. J. Biol. Chem. 280, 7777–7785 (2005).

    Article  CAS  Google Scholar 

  33. Meinecke, M. et al. Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312, 1523–1526 (2006).

    Article  CAS  Google Scholar 

  34. Huang, S., Ratliff, K.S. & Matouschek, A. Protein unfolding by the mitochondrial membrane potential. Nat. Struct. Biol. 9, 301–307 (2002).

    Article  CAS  Google Scholar 

  35. Alder, N.N., Sutherland, J., Buhring, A.I., Jensen, R.E. & Johnson, A.E. Quaternary structure of the mitochondrial TIM23 complex reveals dynamic association between Tim23p and other subunits. Mol. Biol. Cell 19, 159–170 (2008).

    Article  CAS  Google Scholar 

  36. Geissler, A. et al. Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b2 modulates the Δψ-dependence of translocation of the matrix-targeting sequence. Mol. Biol. Cell 11, 3977–3991 (2000).

    Article  CAS  Google Scholar 

  37. Lancet, D. & Pecht, I. Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analogue. Biochemistry 16, 5150–5157 (1977).

    Article  CAS  Google Scholar 

  38. Lin, S. & Struve, W.S. Time-resolved fluorescence of nitrobenzoxadiazole-aminohexanoic acid: effect of intermolecular hydrogen-bonding on non-radiative decay. Photochem. Photobiol. 54, 361–365 (1991).

    Article  CAS  Google Scholar 

  39. Cornette, J.L. et al. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Mol. Biol. 195, 659–685 (1987).

    Article  CAS  Google Scholar 

  40. Silberberg, S.D., Chang, T.H. & Swartz, K.J. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels. J. Gen. Physiol. 125, 347–359 (2005).

    Article  CAS  Google Scholar 

  41. Ma, Z., Kong, J. & Kallen, R.G. Studies of α-helicity and intersegmental interactions in voltage-gated Na+ channels: S2D4. PLoS ONE 4, e7674 (2009).

    Article  Google Scholar 

  42. Kim, P.K., Annis, M.G., Dlugosz, P.J., Leber, B. & Andrews, D.W. During apoptosis bcl-2 changes membrane topology at both the endoplasmic reticulum and mitochondria. Mol. Cell 14, 523–529 (2004).

    Article  CAS  Google Scholar 

  43. Baracca, A., Sgarbi, G., Solaini, G. & Lenaz, G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim. Biophys. Acta 1606, 137–146 (2003).

    Article  CAS  Google Scholar 

  44. Hall, S.E., Roberts, K. & Vaidehi, N. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction. J. Mol. Graph. Model. 27, 944–950 (2009).

    Article  CAS  Google Scholar 

  45. Langelaan, D.N., Wieczorek, M., Blouin, C. & Rainey, J.K. Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J. Chem. Inf. Model. 50, 2213–2220 (2010).

    Article  CAS  Google Scholar 

  46. Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol. 159, 261–267 (2007).

    Article  CAS  Google Scholar 

  47. Chakrapani, S., Sompornpisut, P., Intharathep, P., Roux, B. & Perozo, E. The activated state of a sodium channel voltage sensor in a membrane environment. Proc. Natl. Acad. Sci. USA 107, 5435–5440 (2010).

    Article  CAS  Google Scholar 

  48. White, S.H. & Wimley, W.C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    Article  CAS  Google Scholar 

  49. Møller, J.V., Olesen, C., Winther, A.M. & Nissen, P. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q. Rev. Biophys. 43, 501–566 (2010).

    Article  Google Scholar 

  50. Cao, Z. & Bowie, J.U. Shifting hydrogen bonds may produce flexible transmembrane helices. Proc. Natl. Acad. Sci. USA 109, 8121–8126 (2012).

    Article  CAS  Google Scholar 

  51. Erlandson, K.J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984–987 (2008).

    Article  CAS  Google Scholar 

  52. Swartz, K.J. Sensing voltage across lipid membranes. Nature 456, 891–897 (2008).

    Article  CAS  Google Scholar 

  53. Zorov, D.B. et al. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc. Res. 83, 213–225 (2009).

    Article  CAS  Google Scholar 

  54. Hüser, J., Rechenmacher, C.E. & Blatter, L.A. Imaging the permeability pore transition in single mitochondria. Biophys. J. 74, 2129–2137 (1998).

    Article  Google Scholar 

  55. Ly, J.D., Grubb, D.R. & Lawen, A. The mitochondrial membrane potential Δψ(m) in apoptosis; an update. Apoptosis 8, 115–128 (2003).

    Article  CAS  Google Scholar 

  56. Hüser, J. & Blatter, L.A. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem. J. 343, 311–317 (1999).

    Article  Google Scholar 

  57. Buckman, J.F. & Reynolds, I.J. Spontaneous changes in mitochondrial membrane potential in cultured neurons. J. Neurosci. 21, 5054–5065 (2001).

    Article  CAS  Google Scholar 

  58. O'Reilly, C.M., Fogarty, K.E., Drummond, R.M., Tuft, R.A. & Walsh, J.V. Jr. Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys. J. 85, 3350–3357 (2003).

    Article  CAS  Google Scholar 

  59. Schwarzländer, M. et al. Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis. Plant Cell 24, 1188–1201 (2012).

    Article  Google Scholar 

  60. Daum, G., Bohni, P.C. & Schatz, G. Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257, 13028–13033 (1982).

    CAS  PubMed  Google Scholar 

  61. Erickson, A.H. & Blobel, G. Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol. 96, 38–50 (1983).

    Article  CAS  Google Scholar 

  62. Krayl, M., Lim, J.H., Martin, F., Guiard, B. & Voos, W. A cooperative action of the ATP-dependent import motor complex and the inner membrane potential drives mitochondrial preprotein import. Mol. Cell. Biol. 27, 411–425 (2007).

    Article  CAS  Google Scholar 

  63. Pfanner, N. et al. Energy requirements for unfolding and membrane translocation of precursor proteins during import into mitochondria. J. Biol. Chem. 265, 16324–16329 (1990).

    CAS  PubMed  Google Scholar 

  64. Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471 (1994).

    Article  CAS  Google Scholar 

  65. Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Science Foundation (MCB-1024908 to N.N.A.), the US National Institutes of Health (GM26494 to A.E.J.) and the Robert A. Welch Foundation (Chair Grant BE-0017 to A.E.J.).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived of and designed the research; K.M., M.S. and N.N.A. conducted experiments; all authors analyzed data; N.N.A. supervised the project and prepared the manuscript and supplementary material.

Corresponding author

Correspondence to Nathan N Alder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Combined PDF

Supplementary Figures 1–7 and Supplementary Notes 1–3 (PDF 4687 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malhotra, K., Sathappa, M., Landin, J. et al. Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force. Nat Struct Mol Biol 20, 965–972 (2013). https://doi.org/10.1038/nsmb.2613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2613

  • Springer Nature America, Inc.

Navigation