Log in

Mottness at finite do** and charge instabilities in cuprates

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

The influence of Mott physics on the do**–temperature phase diagram of copper oxides represents a major issue that is the subject of intense theoretical and experimental efforts. Here, we investigate the ultrafast electron dynamics in prototypical single-layer Bi-based cuprates at the energy scale of the O-2p → Cu-3d charge-transfer (CT) process. We demonstrate a clear evolution of the CT excitations from incoherent and localized, as in a Mott insulator, to coherent and delocalized, as in a conventional metal. This reorganization of the high-energy degrees of freedom occurs at the critical do** pcr ≈ 0.16 irrespective of the temperature, and it can be well described by dynamical mean-field theory calculations. We argue that the onset of low-temperature charge instabilities is the low-energy manifestation of the underlying Mottness that characterizes the p < pcr region of the phase diagram. This discovery sets a new framework for theories of charge order and low-temperature phases in underdoped copper oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Charge-transfer excitation and optical properties of cuprates.
Figure 2: Ultrafast optical spectroscopy on La-Bi2201.
Figure 3: The high-energy phase diagram of cuprates.

Similar content being viewed by others

References

  1. Lee, P. A. & Wen, X.-G. Do** a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  2. Phillips, P. Mottness. Ann. Phys. 321, 1634–1650 (2006); July 2006 Special Issue.

    Article  ADS  Google Scholar 

  3. Abbamonte, P. et al. Spatially modulated “Mottness” in La2−xBaxCuO4 . Nat. Phys. 1, 155–158 (2005).

    Article  Google Scholar 

  4. Fradkin, E. & Kivelson, S. High-temperature superconductivity: ineluctable complexity. Nat. Phys. 8, 864–866 (2012).

    Article  Google Scholar 

  5. Alloul, H. What is the simplest model that captures the basic experimental facts of the physics of underdoped cuprates? C. R. Phys. 15, 519–524 (2014).

    Article  Google Scholar 

  6. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  7. Emery, V. & Kivelson, S. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993).

    Article  ADS  Google Scholar 

  8. Castellani, C., Di Castro, C. & Grilli, M. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 75, 4650–4653 (1995).

    Article  ADS  Google Scholar 

  9. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  10. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  ADS  Google Scholar 

  11. Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-iii-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012).

    Article  ADS  Google Scholar 

  12. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nat. Phys. 8, 871–876 (2012).

    Article  Google Scholar 

  13. Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x . Phys. Rev. B 90, 054513 (2014).

    Article  ADS  Google Scholar 

  14. Tabis, W. et al. Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate. Nat. Commun. 5, 5875 (2014).

    Article  ADS  Google Scholar 

  15. da Silva Neto, E. H. et al. Charge ordering in the electron-doped superconductor Nd2xCexCuO4 . Science 347, 282–285 (2015).

    Article  ADS  Google Scholar 

  16. Comin, R. et al. Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y . Science 347, 1335–1339 (2015).

    Article  ADS  Google Scholar 

  17. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ . Science 343, 390–392 (2014).

    Article  ADS  Google Scholar 

  18. da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

    Article  ADS  Google Scholar 

  19. Wu, T. et al. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy . Nat. Commun. 6, 6438 (2015).

    Article  ADS  Google Scholar 

  20. v. Zimmermann, M. et al. Hard X-ray diffraction study of charge stripe order in La1.48Nd0.4Sr0.12CuO4 . Europhys. Lett. 41, 629–634 (1998).

    Article  ADS  Google Scholar 

  21. Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nat. Phys. 3, 780–785 (2007).

    Article  Google Scholar 

  22. Tranquada, J. M. et al. Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4 . Phys. Rev. B 78, 174529 (2008).

    Article  ADS  Google Scholar 

  23. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  ADS  Google Scholar 

  24. Li, Y. et al. Hidden magnetic excitation in the pseudogap phase of a high-Tc superconductor. Nature 468, 283–285 (2010).

    Article  ADS  Google Scholar 

  25. Karapetyan, H. et al. Magneto-optical measurements of a cascade of transitions in superconducting La1.875Ba0.125CuO4 single crystals. Phys. Rev. Lett. 109, 147001 (2012).

    Article  ADS  Google Scholar 

  26. Sordi, G., Haule, K. & Tremblay, A.-M. S. Mott physics and first-order transition between two metals in the normal-state phase diagram of the two-dimensional Hubbard model. Phys. Rev. B 84, 075161 (2011).

    Article  ADS  Google Scholar 

  27. Phillips, P. Normal state of the copper oxide high-temperature superconductors. Phil. Trans. R. Soc. A 369, 1572–1573 (2011).

    Article  ADS  Google Scholar 

  28. Uchida, S. et al. Optical spectra of La2−xSrxCuO4: effect of carrier do** on the electronic structure of the CuO2 plane. Phys. Rev. B 43, 7942–7954 (1991).

    Article  ADS  Google Scholar 

  29. Lupi, S. et al. Far-infrared absorption and the metal-to-insulator transition in hole-doped cuprates. Phys. Rev. Lett. 102, 206409 (2009).

    Article  ADS  Google Scholar 

  30. Nicoletti, D. et al. High-temperature optical spectral weight and Fermi-liquid renormalization in bi-based cuprate superconductors. Phys. Rev. Lett. 105, 077002 (2010).

    Article  ADS  Google Scholar 

  31. Dal Conte, S. et al. Disentangling the electronic and phononic glue in a high-Tc superconductor. Science 335, 1600–1603 (2012).

    Article  ADS  Google Scholar 

  32. Dal Conte, S. et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421–426 (2015).

    Article  Google Scholar 

  33. Hansmann, P., Parragh, N., Toschi, A., Sangiovanni, G. & Held, K. Importance of dp Coulomb interaction for high Tc cuprates and other oxides. New J. Phys. 16, 033009 (2014).

    Article  ADS  Google Scholar 

  34. Falck, J. P., Levy, A., Kastner, M. A. & Birgeneau, R. J. Charge-transfer spectrum and its temperature dependence in La2CuO4 . Phys. Rev. Lett. 69, 1109–1112 (1992).

    Article  ADS  Google Scholar 

  35. Novelli, F. et al. Witnessing the formation and relaxation of dressed quasi-particles in a strongly correlated electron system. Nat. Commun. 5, 5112 (2014).

    Article  ADS  Google Scholar 

  36. Kawasaki, S., Lin, C., Kuhns, P. L., Reyes, A. P. & Zheng, G.-q. Carrier-concentration dependence of the pseudogap ground state of superconducting Bi2Sr2−xLaxCuO6+δ revealed by 63,65Cu-nuclear magnetic resonance in very high magnetic fields. Phys. Rev. Lett. 105, 137002 (2010).

    Article  ADS  Google Scholar 

  37. Cilento, F. et al. Photo-enhanced antinodal conductivity in the pseudogap state of high-Tc cuprates. Nat. Commun. 5, 4353 (2014).

    Article  ADS  Google Scholar 

  38. Grilli, M., Raimondi, R., Castellani, C., Di Castro, C. & Kotliar, G. Superconductivity, phase separation, and charge-transfer instability in the U = limit of the three-band model of the CuO2 planes. Phys. Rev. Lett. 67, 259–262 (1991).

    Article  ADS  Google Scholar 

  39. Sordi, G., Sémon, P., Haule, K. & Tremblay, A.-M. S. Pseudogap temperature as a Widom line in doped Mott insulators. Sci. Rep. 2, 547 (2012).

    Article  ADS  Google Scholar 

  40. Fisher, D., Kotliar, G. & Moeller, G. Midgap states in doped Mott insulators in infinite dimensions. Phys. Rev. B 52, 17112–17118 (1995).

    Article  ADS  Google Scholar 

  41. Fujita, K. et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014).

    Article  ADS  Google Scholar 

  42. He, Y. et al. Fermi surface and pseudogap evolution in a cuprate superconductor. Science 344, 608–611 (2014).

    Article  ADS  Google Scholar 

  43. Fournier, D. et al. Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+x . Nat. Phys. 6, 905–911 (2010).

    Article  Google Scholar 

  44. Deutscher, G., Santander-Syro, A. F. & Bontemps, N. Kinetic energy change with do** upon superfluid condensation in high-temperature superconductors. Phys. Rev. B 72, 092504 (2005).

    Article  ADS  Google Scholar 

  45. Giannetti, C. et al. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2, 353 (2011).

    Article  ADS  Google Scholar 

  46. **a, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    Article  ADS  Google Scholar 

  47. Ando, Y., Komiya, S., Segawa, K., Ono, S. & Kurita, Y. Electronic phase diagram of high-Tc cuprate superconductors from a map** of the in-plane resistivity curvature. Phys. Rev. Lett. 93, 267001 (2004).

    Article  ADS  Google Scholar 

  48. Ono, S. et al. Metal-to-insulator crossover in the low-temperature normal state of Bi2Sr2−xLaxCuO6+δ . Phys. Rev. Lett. 85, 638–641 (2000).

    Article  ADS  Google Scholar 

  49. Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

    Article  ADS  Google Scholar 

  50. Laliberté, F. et al. Origin of the metal-to-insulator crossover in cuprate superconductors. Preprint at Article  ADS  Google Scholar 

  51. Ando, Y. et al. Carrier concentrations in Bi2Sr2−zLazCu6+δ single crystals and their relation to the Hall coefficient and thermopower. Phys. Rev. B 61, R14956–R14959 (2000).

    Article  ADS  Google Scholar 

  52. Ono, S. & Ando, Y. Evolution of the resistivity anisotropy in Bi2Sr2−xLaxCuO6+δ single crystals for a wide range of hole do**. Phys. Rev. B 67, 104512 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Grilli, A. Bianconi, L. Benfatto, F. Cilento, D. Fausti, F. Parmigiani, L. De’ Medici, M. Minola, B. Keimer and J. Bonča for useful and fruitful discussions. The research activities of M.F. have received funding from the European Union, under the project ERC-692670 (FIRSTORM). F.B. acknowledges financial support from the MIUR-Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (project number: RBFR13NEA4). M.C. and C.G. acknowledge financial support from MIUR through the PRIN 2015 Programme (Prot. 2015C5SEJJ001). M.C. acknowledges funding by SISSA/CNR project ‘Superconductivity, Ferroelectricity and Magnetism in Bad Metals’ (Prot. 232/2015). F.B., G.F. and C.G. acknowledge support from Università Cattolica del Sacro Cuore through D.1, D.2.2 and D.3.1 grants. F.B. and G.F. acknowledge financial support from Fondazione E.U.L.O. D.B. acknowledges the Emmy Noether Programme of the Deutsche Forschung Gemeinschaft. G.C. acknowledges funding from the European Union Horizon 2020 Programme under Grant Agreement 696656 Graphene Core 1. This research was undertaken thanks in part to funding from the Max Planck-UBC Centre for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. The work at UBC was supported by the Killam, Alfred P. Sloan, and Natural Sciences and Engineering Research Council of Canada’s (NSERC’s) Steacie Memorial Fellowships (A.D.); the Alexander von Humboldt Fellowship (A.D.); the Canada Research Chairs Program (A.D.); and the NSERC, Canada Foundation for Innovation (CFI), and CIFAR Quantum Materials.

Author information

Authors and Affiliations

Authors

Contributions

C.G. coordinated the research activities with input from all the coauthors, in particular S.P., S.D.C., F.B., M.F., M.C., A.D. and G.C. The NOPA-based pump–probe set-up was designed and developed by D.B. and G.C. The time-resolved optical measurements were performed by S.P., S.D.C., N.M., A.R., P.A., F.B., G.F., D.B., G.C. and C.G. The analysis of the time-resolved data was performed by S.P., S.D.C., N.M. and C.G. The mean-field estimation of the charge-transfer shift was carried out by M.F. The DMFT calculations were carried out by M.C. The La-Bi2201 crystals were characterized by S.L., R.C. and A.D. The RXS measurements were performed by R.C. and A.D. The text was written by C.G. with major input from S.P., S.D.C., F.B., G.F., D.B., S.L., M.F., M.C., A.D. and G.C. All authors extensively discussed the results and the interpretation and revised the manuscript.

Corresponding author

Correspondence to C. Giannetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peli, S., Conte, S., Comin, R. et al. Mottness at finite do** and charge instabilities in cuprates. Nature Phys 13, 806–811 (2017). https://doi.org/10.1038/nphys4112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4112

  • Springer Nature Limited

This article is cited by

Navigation