Log in

Temporal map** of photochemical reactions and molecular excited states with carbon specificity

  • Article
  • Published:

From Nature Materials

View current issue Submit your manuscript

Matters Arising to this article was published on 10 May 2021

Abstract

Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump–probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: A schematic illustration of the molecule under investigation and the experimental set-up.
Figure 2: The time-dependent ALC measurements.
Figure 3: A variety of muon measurements undertaken to understand the increase in amplitude of the ALC at low times.
Figure 4: Consistency checking with ground-state muon measurements.

Similar content being viewed by others

References

  1. Singer, C. E. & Ames, B. N. Sunlight ultraviolet and bacterial DNA base ratios. Science 170, 822–826 (1970).

    Article  CAS  Google Scholar 

  2. Margulis, L., Walker, J. C. G. & Rambler, M. Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264, 620–624 (1976).

    Article  CAS  Google Scholar 

  3. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis (Springer, 1999).

    Book  Google Scholar 

  4. Ojima, I. Catalytic Asymmetric Synthesis 3rd edn (Wiley, 2010).

    Book  Google Scholar 

  5. Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).

    Article  CAS  Google Scholar 

  6. Lévesque, F. & Seeberger, P. H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed. 51, 1706–1709 (2012).

    Article  CAS  Google Scholar 

  7. Lunt, R. R., Giebink, N. C., Belak, A. A., Benziger, J. B. & Forrest, S. R. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009).

    Article  CAS  Google Scholar 

  8. Menke, S. M., Luhman, W. A. & Holmes, R. J. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency. Nat. Mater. 12, 152–157 (2013).

    Article  CAS  Google Scholar 

  9. Hofmann, S., Rosenow, T. C., Gather, M. C., Lüssem, B. & Leo, K. Singlet exciton diffusion length in organic light-emitting diodes. Phys. Rev. B 85, 245209 (2012).

    Article  CAS  Google Scholar 

  10. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    Article  CAS  Google Scholar 

  11. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  CAS  Google Scholar 

  12. Ehrler, B., Wilson, M. W., Rao, A., Friend, R. H. & Greenham, N. Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012).

    Article  CAS  Google Scholar 

  13. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  CAS  Google Scholar 

  14. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  Google Scholar 

  15. Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photon. 8, 326–332 (2014).

    Article  CAS  Google Scholar 

  16. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 46). Prog. Photovolt. 23, 1–9 (2015).

    Article  Google Scholar 

  17. Schmidbauer, S., Hohenleutner, A. & König, B. Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials. Adv. Mat. 25, 2114–2129 (2013).

    Article  CAS  Google Scholar 

  18. Kondakov, D. Y., Brown, C. T., Pawlik, T. D. & Jarikov, V. V. Chemical reactivity of aromatic hydrocarbons and operational degradation of organic light-emitting diodes. J. Appl. Phys. 107, 024507 (2010).

    Article  CAS  Google Scholar 

  19. Yokoyama, K. et al. Future directions of μSR - laser excitation. Phys. Scr. 88, 068511 (2013).

    Article  CAS  Google Scholar 

  20. Kadono, R., Matsushita, A., Macrae, R. M., Nishiyama, K. & Nagamine, K. Muonium centers in crystalline Si and Ge under illumination. Phys. Rev. Lett. 73, 2724–2727 (1994).

    Article  CAS  Google Scholar 

  21. Ghandi, K., Clark, I. P., Lordc, J. S. & Cottrell, S. P. Laser-muon spin spectroscopy in liquids—A technique to study the excited state chemistry of transients. Phys. Chem. Chem. Phys. 9, 353–359 (2007).

    Article  CAS  Google Scholar 

  22. Nuccio, L., Schulz, L. & Drew, A. J. Muon spin spectroscopy: magnetism, soft matter and the bridge between the two. J. Phys. D 47, 473001 (2014).

    Article  CAS  Google Scholar 

  23. Fleming, D. G. et al. Kinetic isotope effects for the reactions of muonic helium and muonium with H2 . Science 331, 448–450 (2011).

    Article  CAS  Google Scholar 

  24. Baer, S., Fleming, D., Arseneau, D., Senba, M. & Gonzalez, A. Kinetic isotope effects in gas-phase muonium reactions. ACS Symp. Ser. 502, 111–137 (1992).

    Article  CAS  Google Scholar 

  25. Tanaka, T. & Takayanagi, T. Quantum reactive scattering calculations of H + F2 and Mu + F2 reactions on a new ab initio potential energy surface. Chem. Phys. Lett. 496, 248–253 (2010).

    Article  CAS  Google Scholar 

  26. Claxton, T. A. Aspects of muonium chemistry. Chem. Soc. Rev. 24, 437–448 (1995).

    Article  CAS  Google Scholar 

  27. Patterson, B. Muonium states in semiconductors. Rev. Mod. Phys. 60, 69–159 (1988).

    Article  CAS  Google Scholar 

  28. Kreitzman, S. R. & Roduner, E. Theory of avoided level-crossing relaxation dynamics for axial muonated radicals. Chem. Phys. 192, 189–230 (1995).

    Article  CAS  Google Scholar 

  29. Roduner, E. The Positive Muon as a Probe in Free Radical Chemistry: Potential and Limitations of the μSR Techniques (Springer, 1988).

    Book  Google Scholar 

  30. Shimomura, K. et al. Pilot experiment for muonium photo ionization in GaAs. J. Phys. Conf. Ser. 225, 012004 (2010).

    Article  CAS  Google Scholar 

  31. Rhodes, C. J. Muonium—the second radioisotope of hydrogen—and its contribution to free-radical chemistry. J. Chem. Soc. Perkin Trans. 2, 1379–1396 (2002).

    Article  Google Scholar 

  32. Schulz, L. et al. Importance of intramolecular electron spin relaxation in small molecule semiconductors. Phys. Rev. B 84, 085209 (2011).

    Article  CAS  Google Scholar 

  33. Nuccio, L. et al. Importance of spin-orbit interaction for the electron spin relaxation in organic semiconductors. Phys. Rev. Lett. 110, 216602 (2013).

    Article  CAS  Google Scholar 

  34. Semba, M. Muon charge exchange and muonium spin exchange in gases. Hyperfine Interact. 65, 779 (1991).

    Article  Google Scholar 

  35. Coppo, P. & Yeates, S. G. Shining light on a pentacene derivative: the role of photoinduced cycloadditions. Adv. Mater. 17, 3001–3005 (2005).

    Article  CAS  Google Scholar 

  36. Abu-Sen, L., Morrison, J. J., Horn, A. B. & Yeates, S. G. Concentration- and solvent-dependent photochemical instability of 6,13-Bis(triisopropysilylethynyl)pentacene. Adv. Opt. Mater. 2, 636–640 (2014).

    Article  CAS  Google Scholar 

  37. Frisch, M. J. et al. Gaussian09 Revision C.01 (Gaussian, 2010).

    Google Scholar 

  38. Murray, J. S. & Politzer, P. Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. J. Mol. Struct. 425, 107–114 (1998).

    Article  CAS  Google Scholar 

  39. Walker, B. J., Musser, A. J., Beljonne, D. & Friend, R. H. Singlet exciton fission in solution. Nat. Chem. 5, 1019–1024 (2013).

    Article  CAS  Google Scholar 

  40. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    Article  CAS  Google Scholar 

  41. Lunt, R. R. et al. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.J.D. would like to acknowledge financial support from the European Research Council (MuSES project, proposal number 307593) and Sichuan University. All authors would like to acknowledge the scientific and technical support provided by the ISIS pulsed muon and neutron source. We would like to acknowledge Litron Lasers Ltd., as this work would not have been possible without their exceptional customer service and technical expertise. K.W. was funded by the Chinese Scholarship Council. P.M. was funded by Queen Mary University of London, under the Principal’s Studentship scheme.

Author information

Authors and Affiliations

Authors

Contributions

K.W. and P.M. contributed equally to this work. K.W., P.M., K.Y., J.S.L., F.L.P., J.H., L.S., M.W., N.A.M., S.Z., P.H. and A.J.D. performed the experimental work. K.Y., P.M., J.S.L. and A.J.D. designed, built, tested and commissioned the photo-μSR spectrometer (to be described fully elsewhere). P.M., K.Y., J.S.L., L.N., D.J.D., K.S., I.W., P.H. and A.J.D. set up the experimental equipment for the work reported here. K.W., J.S.L. and A.J.D. analysed and interpreted the μSR data. K.W. and A.M. performed the DFT calculations. J.E.A., P.H. and A.J.D. interpreted the implications of the results. Everyone contributed to writing the paper. A.J.D. conceived the research and managed the project.

Corresponding authors

Correspondence to P. Heathcote or A. J. Drew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Murahari, P., Yokoyama, K. et al. Temporal map** of photochemical reactions and molecular excited states with carbon specificity. Nature Mater 16, 467–473 (2017). https://doi.org/10.1038/nmat4816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4816

  • Springer Nature Limited

This article is cited by

Navigation