Log in

The Werner syndrome protein is a DNA helicase

  • Letter
  • Published:

From Nature Genetics

View current issue Submit your manuscript

Abstract

Werner syndrome (WS) is an uncommon autosomal recessive disorder characterized by premature aging. The clinical manifestations of WS, including atherosclerosis and osteoporosis, appear early in adulthood, and death in the fourth to sixth decade commonly ensues from myocardial infarction or cancer1,2. In accord with the aging phenotype, cells from WS patients have a reduced replicative life span in culture3. Genomic instability is observed at the cytogenetic level in the form of chromosome breaks and translations4 and at the molecular level by multiple large deletions5. The Werner syndrome gene (WRN) has recently been cloned6. The predicted product is a 1,432-amino-acid protein whose central domain is homologous to members of the RecQ family of DNA helicases. Such homology does not necessarily mean that WRN encodes an active helicase. For example, the Saccharomyces cerevisiae RAD26 gene protein7 and the human transcription-repair coupling factor CSB (Cockayne syndrome B)8 are highly homologous to known helicases, yet neither encodes an active helicase. Moreover, the Bloom's syndrome gene (BLM)9, discovered before WRN, is also homologous to the RecQ family of DNA helicases, though we still await demonstration that it encodes an active helicase. Here we report that the WS protein does indeed catalyze DNA unwinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Epstein, C.J., Martin, G.M., Schultz, A.L. & Motulsky, A.G. Werner's syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177–221 (1966).

    Article  CAS  Google Scholar 

  2. Goto, M., Miller, R.W., Ishikawa, Y. & Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomark. Prev. 5, 239–246 (1996).

    CAS  Google Scholar 

  3. Martin, G.M., Sprague, C.A. & Epstein, C.J. Replicative life-span of cultivated human cells. Lab. Invest. 23, 86–92 (1970).

    CAS  PubMed  Google Scholar 

  4. Salk, D., Au, K., Hoehn, H. & Martin, G.M. Cytogenetics of Werner's syndrome cultured skin fibroblasts: variegated translocation mosaicism. Cytogenet. Cell Genet. 30, 92–107 (1981).

    Article  CAS  Google Scholar 

  5. Fukuchi, K., Martin, G.M. & Monnat, R.J., Jr., Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc. Natl. Acad. Sci. USA 86, 5893–5897 (1989).

    Article  CAS  Google Scholar 

  6. Yu, C.-E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    Article  CAS  Google Scholar 

  7. van Gool, A.J. et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13, 5361–5369 (1994).

    Article  CAS  Google Scholar 

  8. Selby, C.P. & Sancar, A. Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. J. Biol. Chem. 270, 4882–4889 (1995).

    Article  CAS  Google Scholar 

  9. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 80, 655–666 (1995).

    Article  Google Scholar 

  10. Lanford, R. Expression of simian virus 40 T antigen in insect cells using a baculovirus vector. J. Virol. 167, 72–81 (1988).

    Article  CAS  Google Scholar 

  11. Lohman, T.M. Helicase-catalyzed DNA unwinding. J. Biol. Chem. 268, 2269–2272 (1993).

    CAS  PubMed  Google Scholar 

  12. Matson, S.W. Escherichia coli helicase II (uvrD gene product) translocates unidirectionally in a 3′to 5′ direction. J. Biol. Chem. 261, 10169–10175 (1986).

    CAS  PubMed  Google Scholar 

  13. George, J.W., Brosh, R.M., Jr., & Matson, S.W. A dominant negative allele of the Escherichia coli uvrD gene encoding DNA helicase II. J. Mol. Biol. 235, 424–435 (1994).

    Article  CAS  Google Scholar 

  14. Lu, J. et al. Human homologues of yeast helicase. Nature 383, 678–679 (1996).

    Article  CAS  Google Scholar 

  15. Umezu, K., Nakayama, K. & Nakayama, H. Escherichia coli RecQ protein is a DNA helicase. Proc. Natl. Acad. Sci. USA 87, 5363–5367 (1990).

    Article  CAS  Google Scholar 

  16. Sung, P. et al. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855 (1993).

    Article  CAS  Google Scholar 

  17. Umezu, K. & Nakayama, H. RecQ DNA helicase of Escherichia coli. J. Mol. Biol. 230, 1145–1150 (1993).

    Article  CAS  Google Scholar 

  18. Boehmer, P.E., Dodson, M.S. & Lehman, I.R. The herpes simplex virus type-1 origin binding protein. J. Biol. Chem. 268, 1220–1225 (1993).

    CAS  PubMed  Google Scholar 

  19. Nakayama, H. et al. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the recF recombination pathway. Mol. Gen. Genet. 195, 474–480 (1984).

    Article  CAS  Google Scholar 

  20. Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D. & Rehrauer, W.M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Watt, P.M., Louis, E.J., Borts, R.H. & Hickson, I.D. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81, 253–260 (1995).

    Article  CAS  Google Scholar 

  22. Gebhart, E. et al. Spontaneous and induced chromosomal instability in Werner syndrome. Hum. Genet. 80, 135–139 (1988).

    Article  CAS  Google Scholar 

  23. Yu, C.-E. et al. Mutations in the consensus helicase domains of the Werner syndrome gene. Am. J. Hum. Genet. 60, 330–341 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oshima, J. et al. Homozygous and compound heterozygous mutations at the Werner syndrome locus. Hum. Mol. Gen. 5, 1909–1913 (1996).

    Article  CAS  Google Scholar 

  25. Courcelle, J., Carswell-Crumpton, C. & Hanawalt, P.C. recf and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 3714–3719 (1997).

    Article  CAS  Google Scholar 

  26. Poot, M., Hoehn, H., Runger, T.M. & Martin, G.M., Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp. Cell. Res. 202, 267–273 (1992).

    Article  CAS  Google Scholar 

  27. Berenblum, I. & Chain, E. An improved method for the colorimetric determination of phosphate. Biochem. J. 32, 295–298 (1938).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence A. Loeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, M., Shen, JC., Kamath-Loeb, A. et al. The Werner syndrome protein is a DNA helicase. Nat Genet 17, 100–103 (1997). https://doi.org/10.1038/ng0997-100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-100

  • Springer Nature America, Inc.

This article is cited by

Navigation