Log in

Breast cancer quality control

  • News & Views
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Tumorigenesis is regulated by several mechanisms including signalling, transcription and DNA replication. Now a cytoplasmic protein quality-control pathway is implicated in the suppression of breast cancer cell growth, suggesting a new role for quality-control mechanisms in suppressing cells with malignant potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1: SRC-3 associates with a variety of targets, including the histone acetytransferase p300/CBP and oestrogen receptor.

References

  1. Kajiro M. et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nature Cell Biol. 11, 312–319 (2009).

    Article  CAS  Google Scholar 

  2. Tateishi, Y. et al. Ligand-dependent switching of ubiquitin–proteasome pathways for estrogen receptor. EMBO J. 23, 4813–4823 (2004).

    Article  CAS  Google Scholar 

  3. Wu, R. C., Feng, Q., Lonard, D. M. & O'Malley, B. W. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129, 1125–1140 (2007).

    Article  CAS  Google Scholar 

  4. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  Google Scholar 

  5. Connell, P. et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nature Cell Biol. 3, 93–96 (2001).

    Article  CAS  Google Scholar 

  6. McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003).

    Article  CAS  Google Scholar 

  7. Dai, Q. et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J. 22, 5446–5458 (2003).

    Article  CAS  Google Scholar 

  8. Dickey, C. A. et al. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J. Neurosci. 26, 6985–6996 (2006).

    Article  CAS  Google Scholar 

  9. Sanbe, A. et al. Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proc. Natl Acad. Sci. USA 102, 13592–13597 (2005).

    Article  CAS  Google Scholar 

  10. Neckers, L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 8, S55–S61 (2002).

    Article  CAS  Google Scholar 

  11. **n, H. et al. CHIP controls the sensitivity of transforming growth factor-β signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J. Biol. Chem. 280, 20842–20850 (2005).

    Article  CAS  Google Scholar 

  12. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007).

    Article  CAS  Google Scholar 

  13. Min, J. N. et al. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol. Cell. Biol. 28, 4018–4025 (2008).

    Article  CAS  Google Scholar 

  14. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, C., Ronnebaum, S. Breast cancer quality control. Nat Cell Biol 11, 239–241 (2009). https://doi.org/10.1038/ncb0309-239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0309-239

  • Springer Nature Limited

This article is cited by

Navigation