Log in

Novel bidentate ruthenium(III) Schiff base complexes: synthetic, spectral, electrochemical, catalytic and antimicrobial studies

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

RuIII complexes of the type [RuX(L)2(E)] (X = Cl or Br; L = novel bidentate Schiff base ligand; E = PPh3 or AsPh3) have been prepared by reacting [RuX3(E)3] or [RuBr3(PPh3)2(MeOH)] with two novel bidentate Schiff base ligands derived from 4-(1-methyl-1-mesitylcyclobutane-3-yl)-2-aminothiazole, in a 1:2 molar ratio in benzene, and characterised by analytical, spectral (i.r., electronic, 1H-, 13C- n.m.r., and e.p.r.) and electrochemical data. An octahedral structure has been tentatively proposed for all the new complexes. The thermal properties of the ligands and their complexes have been studied by t.g.a. The new RuIII complexes are effective catalysts for the oxidation of alcohols to carbonyl compounds but are unable to oxidise alkenes in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant. The antimicrobial activity of the ligands and complexes have also been tested against six microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Holm, G.W. Everett and A. Chakravorty, Prog. Inorg. Chem., 7, 83 (1966).

    Google Scholar 

  2. K. Kawakami, M. Miya-Uchi and T. Tanaka, J. Inorg. Nucl. Chem., 33, 3773 (1971).

    Article  Google Scholar 

  3. J.I. Bullock and H.A. Tajmir-Riahi, J. Chem. Soc. Dalton Trans., 36 (1978).

  4. E.V. Dehmion and S.S. Schmidt, Liebigs Ann. Chem., 411 (1990).

  5. P.I. Slip, M. Closier and M. Neville, J. Med. Chem., 17, 207 (1974).

    PubMed  Google Scholar 

  6. K.-M. Sung, S. Huh and M.-J. Jun, Polyhedron, 18, 469 (1999).

    Article  Google Scholar 

  7. D. Chatterjeea, A. Mitra and B.C. Roy, J. Mol. Cat., 161, 17 (2000).

    Article  Google Scholar 

  8. A.S. Goldstein, R.H. Beer and R.S. Drago, J. Am. Chem. Soc., 116, 2424 (1994).

    Google Scholar 

  9. M.M.T. Khan and A.E. Martell, Homogeneous Catalysis of Metal Complexes, Academic Press, New York, 1974, vol. 1.

    Google Scholar 

  10. R.I. Kureshy, N.H. Khan and S.H.R. Abdi, J. Mol. Cat., 96, 117 (1995).

    Article  Google Scholar 

  11. A.M. El-Hendawy, A.H. Alkubaisi, A. El-Ghany El-Kourashy and M.M. Shanab, Polyhedron, 12, 2343 (1993).

    Article  Google Scholar 

  12. A.M. El-Hendawy, A. El-Ghany El-Kourashy and M.M. Shanab, Polyhedron, 11, 523 (1992).

    Article  Google Scholar 

  13. A.I. Vogel, Textbook of Practical Organic Chemistry, 5th Edit., Longman, London, 1989.

    Google Scholar 

  14. M.A. Akhmedov, I.K. Sardarov, I.M. Akhmedov, R.R. Kostikov, A.V. Kisin and N.M. Babaev, Zhurnal Organicheskoi Khimii, 27, 1434 (1991).

    Google Scholar 

  15. A. Cukurovali and I. Yilmaz, Polish J. Chem., 74, 147 (2000).

    Google Scholar 

  16. A. Cukurovali, I. Yilmaz and H. Ozmen, Trans. Met. Chem., 26, 619 (2001).

    Article  Google Scholar 

  17. T. Daniel Thangadurai and K. Natarajan, Ind. J. Chem., 40A, 573 (2001).

    Google Scholar 

  18. M. Tumer, H. Koksal, M.K. Sener and S. Serin, Trans. Met. Chem., 24, 414 (1999).

    Article  Google Scholar 

  19. K. Veno and A.E. Martell, J. Phys. Chem., 60, 1230 (1956).

    Google Scholar 

  20. A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd Edit., Elsevier, New York, 1989.

    Google Scholar 

  21. T. Daniel Thangadurai and K. Natarajan, Trans. Met. Chem., 25, 347 (2000).

    Article  Google Scholar 

  22. Z. Shirin and R.N. Mukherjee, Polyhedron, 11, 2625 (1992).

    Article  Google Scholar 

  23. A. Shyamala and A.R. Chakravarthy, Polyhedron, 12, 1545 (1993).

    Article  Google Scholar 

  24. R. Ramesh, P.K. Suganthy and K. Natarajan, Synth. React. Inorg. Met. Org. Chem., 26, 47 (1996).

    Google Scholar 

  25. J.-Y. Kim, M.-J. Jun and W.-Y. Lee, Polyhedron, 15, 3787 (1996).

    Article  Google Scholar 

  26. C.H. Collins and P.M. Lyne, Microbial Methods, University Park Press, Baltimore, 1970.

    Google Scholar 

  27. R.S. Srivastva, J. Inorg. Nucl. Chem., 42, 1526 (1980).

    Article  Google Scholar 

  28. B.G. Tweedy, Phytopathology, 55, 910 (1964).

    Google Scholar 

  29. R. Maruvada, S.C. Pal and G. Balakrish Nair, J. Micro. Bio. Methods, 20, 115 (1994).

    Article  Google Scholar 

  30. T.J. Franklin and G.A. Snow, Biochemistry of Antimicrobial Action, 2nd Edit., Chapman and Hall, London, 1971, p. 161.

    Google Scholar 

  31. S.C.J. Singh, N. Gupta and R.V. Singh, Ind. J. Chem., 34A, 733 (1995).

    Google Scholar 

  32. P.G. Lawrence, P.L. Harold and O.G. Francis, Antibiot. Chemother., 1597 (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangadurai, T.D., Ihm, SK. Novel bidentate ruthenium(III) Schiff base complexes: synthetic, spectral, electrochemical, catalytic and antimicrobial studies. Transition Metal Chemistry 29, 189–195 (2004). https://doi.org/10.1023/B:TMCH.0000019419.40754.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TMCH.0000019419.40754.63

Keywords

Navigation