Log in

Titanium oxide nanotubes for bone regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium oxide nanotubes with Ca ions on their surfaces were prepared as 2 mm cylindrical inserts and placed into surgically created bone defects in the femurs of Wistar rats. On day 3, fibroblast-like cells were present on the surface of the nanotube inserts and fibers were observed by scanning electron microscopy (SEM). On day 7, cells with alkaline phosphatase activity were present and identified as osteoblasts by SEM and transmission electron microscopy. New bone matrices were observed in and around the porous nanotube inserts by light microscopy. Compared with clinically used hydroxyapatite and tricalcium phosphate, β-titanium oxide nanotubes promote faster acquisition and development of osteoblasts and bone tissues and have better bone regenerating ability after one week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. KASEMO, J Prosthet. Dent. 49 (1983) 832.

    Google Scholar 

  2. IARC Monogr. Eval. Carcinog. Risks Hum. 47 (1989) 307.

  3. T. KASUGA, H. KONDO and M. NOGAMI, J Cryst. Growth 235 (2002) 235.

    Google Scholar 

  4. T. KOKUBO, H. KUSHITANI and S. SAKKA, J. Biomed. Mater. Res. 24 (1990) 721.

    Google Scholar 

  5. T. KASUGA, M. HIRAMATSU, A. HOSON, T. SEKINO and K. NIIHARA, Langmuir 14 (1998) 3160.

    Google Scholar 

  6. T. KASUGA, M. HIRAMATSU, A. HOSON, T. SEKINO and K. NIIHARA, Adv. Mater. 11 (1999) 1307.

    Google Scholar 

  7. C. OHTSUKI, H. IIDA, S. HAYAKAWA and A. OSAKA, J Biomed. Mater. Res. 35 (1997) 39.

    Google Scholar 

  8. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA and K. DE GROOT, ibid. 28 (1994) 7.

    Google Scholar 

  9. S. F. JACKSON, Proc. R. Soc. B 146 (1956) 270.

    Google Scholar 

  10. R. A. ROBINSON and M. L. WATSON, Anat. Rec. 114 (1952) 383.

    Google Scholar 

  11. R. A. ROBINSON and D. A. CAMERON, J. Biophys. Biochem. Cytol. 2 (1956) 253.

    Google Scholar 

  12. R. R. COOPER, J. W. MILGRAM and R. A. ROBINSON, J.Bone Joint Surg. Amer. 48-A (1966) 1239.

    Google Scholar 

  13. B. L. SCOTT and M. D. GLIMCHER, J Ultrastruct. Res. 36 (1971) 565.

    Google Scholar 

  14. J. PRITCHARD, J Anat. 86 (1952) 259.

    Google Scholar 

  15. S. C. LUK, C. NOPAJAROONSRI and G. T. SIMON, J. Ultrastruct. Res. 46 (1974) 184.

    Google Scholar 

  16. E. A. TONNA, Lab. Invest. 31 (1974) 609.

    Google Scholar 

  17. M. SAITO, A. MARUOKA and T. MORI, Biomaterials 15 (1994) 156.

    Google Scholar 

  18. L. CERRONI, R. FILOCAMO, M. FABBRI, C. PICONI, S. CAROPRESO and S. G. CONDO, Biomol. Eng. 19 (2002) 119.

    Google Scholar 

  19. J. WILTFANG, H. A. MERTEN, K. A. SCHLEGEL, S. SCHULTZE-MOSGAU, F. R. KLOSS, S. RUPPRECHT and P. KESSLER, J. Biomed. Mater. Res. (Appl. Biomater.) 63 (2002) 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, S., Johkura, K., Asanuma, K. et al. Titanium oxide nanotubes for bone regeneration. Journal of Materials Science: Materials in Medicine 15, 1031–1035 (2004). https://doi.org/10.1023/B:JMSM.0000042689.78768.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000042689.78768.77

Keywords

Navigation