Log in

Tunable Diode Laser Diagnostic Studies of H2-Ar-O2 Microwave Plasmas Containing Methane or Methanol

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Tunable infrared diode laser absorption spectroscopy has been used to detect the methyl radical and ten stable molecules in H2-Ar-O2 microwave plasmas containing up to 7.2% of methane or methanol, under both flowing and static conditions. The degree of dissociation of the hydrocarbons varied between 30 and 90% and the methyl radical concentration was found to be in the range 10 10 –10 12 molecules cm −3 . The methyl radical concentration and the concentrations of the stable C-2 hydrocarbons C 2 H 2 , C 2 H 4 , and C 2 H 6 , produced in the plasma decayed exponentially when increasing amounts of O 2 were added at fixed methane or methanol partial pressures. In addition to detecting the hydrocarbon species, the major products CO, CO 2 , and H 2 O were also monitored. For the first time, formaldehyde, formic acid, and methane were detected in methanol microwave plasmas, formaldehyde was detected in methane microwave plasmas. Chemical modeling with 57 reactions was used to successfully predict the concentrations in methane plasmas in the absence of oxygen and the trends for the major chemical product species as oxygen was added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Herzberg and J. Shoosmith, Can. J. Phys. 34, 523 (1956).

    Google Scholar 

  2. G. Herzberg, Proc. Roy. Soc. A 262, 291 (1961).

    Google Scholar 

  3. L. Y. Tan, A. M. Winer, and G. C. Pimentel, J. Chem. Phys. 57, 4028 (1972).

    Google Scholar 

  4. C. Yamada, E. Hirota, and K. Kawaguchi, J. Chem. Phys. 75, 5256 (1981).

    Google Scholar 

  5. T. Amano, P. F. Bernath, C. Yamada, Y. Endo, and E. Hirota, J. Chem. Phys. 77, 5284 (1982).

    Google Scholar 

  6. C. Yamada and E. Hirota, J. Chem. Phys. 78, 669 (1983).

    Google Scholar 

  7. G. A. Laguna and S. L. Baughcum, Chem. Phys. Lett. 88, 568 (1982).

    Google Scholar 

  8. G. A. Bethardy and R. G. Macdonald, J. Chem. Phys. 103, 2863 (1995).

    Google Scholar 

  9. G. A. Bethardy, F. J. Northrup, and R. G. Macdonald, J. Chem. Phys. 105, 5433 (1996).

    Google Scholar 

  10. D. F. Davidson, M. D. Di Rosa, E. J. Chang, and R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 53, 581 (1995).

    Google Scholar 

  11. D. H. Fairbrother, K. A. Briggman, K. A. Dickens, P. C. Stair, and E. Weitz, Rev. Sci. Instrument 68, 2031 (1997).

    Google Scholar 

  12. G. N. Robinson, M. S. Zahniser, A. Freedman, and D. D. Nelson Jr., J. Mol. Spectr. 176, 337 (1996).

    Google Scholar 

  13. T. Takayanagi, J. Chem. Phys. 104, 2237 (1996).

    Google Scholar 

  14. K. Tachibana, M. Nishida, H. Harima, and Y. Urano, J. Phys. D: Appl. Phys. 17, 1727 (1984).

    Google Scholar 

  15. F. G. Celii, P. E. Pehrsson, H.-T. Wang, and J. E. Butler, Appl. Phys. Lett. 52, 2043 (1988).

    Google Scholar 

  16. J. Wormhoudt, J. Vacuum Sci. Technol. A 8, 1722 (1990).

    Google Scholar 

  17. J. Wormhoudt and K. E. McCurdy, Chem. Phys. Lett. 156, 47 (1989).

    Google Scholar 

  18. P. B. Davies and P. M. Martineau, Appl. Phys. Lett. 57, 237 (1990).

    Google Scholar 

  19. P. B. Davies and P. M. Martineau, J. Appl. Phys. 71, 6125 (1992).

    Google Scholar 

  20. P. B. Davies and P. M. Martineau, Adv. Mater. 4, 729 (1992).

    Google Scholar 

  21. M. Ikeda, K. Aiso, M. Hori, and T. Goto, Jpn. J. Appl. Phys. 34, 3273 (1995).

    Google Scholar 

  22. S. Naito, N. Ito, T. Hattori, and T. Goto, Jpn. J. Appl. Phys. 34, 302 (1995).

    Google Scholar 

  23. M. Ikeda, M. Hori, T. Goto, M. Inayoshi, K. Yamada, M. Hiramatsu, and M. Nawata, Jpn. J. Appl. Phys. 34, 2484 (1995).

    Google Scholar 

  24. S. Naito, N. Ito, T. Hattori, and T. Goto, Jpn. J. Appl. Phys. 33, 5967 (1994).

    Google Scholar 

  25. S. Naito, M. Ikeda, N. Ito, T. Hattori, and T. Goto, Jpn. J. Appl. Phys. 32, 5721 (1993).

    Google Scholar 

  26. M. Ikeda, N. Ito, M. Hiramatsu, M. Hori, and T. Goto, J. Appl. Phys. 82, 4055 (1997).

    Google Scholar 

  27. S. Kim, D. P. Billesbach, and R. Dillon, J. Vacuum Sci. Technol. A 15, 2247 (1997).

    Google Scholar 

  28. A. Ohl, Large Area Planar Microwave Discharges, in Microwave Discharges: Fundamentals and Applications, C. M. Ferreira, ed., Plenum, New York (1993), p. 205.

    Google Scholar 

  29. A. Ohl and J. Röpcke, Diamond Related Mater. I, 243 (1992).

    Google Scholar 

  30. A. Ohl, J. Röpcke, and W. Schleinitz, Diamond Related Mater. 2, 298 (1993).

    Google Scholar 

  31. J. Röpcke, A. Ohl, and M. Schmidt, J. Anal. Spectr. 8, 803 (1993).

    Google Scholar 

  32. A. Ohl, H. Strobel, J. Röpcke, H. Kammerstetter, A. Pries, and M. Schneider, Surface Coatings Technol. 74–75, 59 (1995).

    Google Scholar 

  33. D. Keller, K. Schröder, B. Husen, and A. Ohl, Polymer Preprints 38, 1043 (1997).

    Google Scholar 

  34. A. Ohl, Journal de Physique IV 8, 83 (1998).

    Google Scholar 

  35. L. S. Rothman et al., J. Quant. Spectros. Radiat. Transfer 48, 469 (1992).

    Google Scholar 

  36. G. Guelachvili and K. N. Rao, Handbook of Infrared Standards, Academic Press, Orlando (1986).

    Google Scholar 

  37. N. Husson et al., J. Quant. Spectros. Radiat. Transfer 52, 425 (1994).

    Google Scholar 

  38. W. Y. Fan, J. Röpcke, and P. B. Davies, J. Vacuum Sci. Technol. A 14, 2970 (1996).

    Google Scholar 

  39. J. Röpcke, M. Käning, and B. P. Lavrov, Journal de Physique IV 8, 207 (1998).

    Google Scholar 

  40. S. A. Astashkevich, M. Käning, E. Käning, N. V. Kokina, B. P. Lavrov, A. Ohl, and J. Röpcke, J. Quant. Spectrosc. Radiat. Transfer 56, 725 (1996).

    Google Scholar 

  41. J. Röpcke, B. P. Lavrov, and A. Ohl, Frontiers in Low Temperature Plasma Diagnostics II, Bad Honnef, Book of Papers (1997), p. 201.

  42. B. P. Lavrov, M. Käning, V. L. Ovtchinnikov, and J. Röpcke, Frontiers in Low Temperature Plasma Diagnostics II, Bad Honnef, Book of Papers, (1997), p. 169.

  43. H. F. Winters, J. Chem. Phys. 63, 3462 (1975).

    Google Scholar 

  44. S. Bohr, R. Haubner, and B. Lux, Appl. Phys. Lett. 68, 1075 (1996).

    Google Scholar 

  45. D. J. Dagel, C. M. Mallouris, and J. R. Doyle, J. Appl. Phys. 79, 8735 (1996).

    Google Scholar 

  46. W. L. Gardner, J. Vacuum Sci. Technol. A 14, 1938 (1996).

    Google Scholar 

  47. S. Harris and A. M. Weiner, J. Appl. Phys. 67, 6520 (1990).

    Google Scholar 

  48. H. Pauser, C. G. Schwärzler, J. Laimer, and H. Störi, Plasma Chem. Plasma Process. 17, 107 (1997).

    Google Scholar 

  49. C. G. Schwärzler, O. Schnabl, J. Laimer, and H. Störi, Plasma Chem. Plasma Process. 16, 173 (1996).

    Google Scholar 

  50. L. E. Kline, W. D. Partlow, and W. E. Bies, J. Appl. Phys. 65, 70 (1989).

    Google Scholar 

  51. M. Frenklach and H. Wang, Phys. Rev. B 43, 1520 (1991).

    Google Scholar 

  52. T. Lang, J. Laimer, and H. Störi, Diamond Related Mater. 3, 470 (1994).

    Google Scholar 

  53. W. Möller, Appl. Phys. A 56, 527 (1993).

    Google Scholar 

  54. D. E. Donohue, J. A. Schiavone, and R. S. Freund, J. Chem. Phys. 67, 769 (1977).

    Google Scholar 

  55. G. Y. Alekseev, V. A. Bityrin, A. N. Bocharov, A. V. Levchenko, A. Ohl, and M. Schmidt, Proc. 12th Int. Conf. Gas Discharges and Their Applications, Greifswald, 407 (1997).

  56. L. S. Zelson, D. F. Davidson, and R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 52, 31 (1994).

    Google Scholar 

  57. D. L. Baulch et al., J. Phys. Chem. Ref. Data 21, 411 (1992).

    Google Scholar 

  58. C. Brechignac, J. W. Johns, A. R. W. McKellar, and M. Wong, J. Mol. Spectr. 96, 353 (1982).

    Google Scholar 

  59. D. G. Murcray, F. J. Murcray, F. S. Bonomo, A. Goldman, and R. D. Blatherwick, “High Resolution Infrared Laboratory Spectra,” University of Denver, Department of Chemistry, Denver, Colorado (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röpcke, J., Mechold, L., Käning, M. et al. Tunable Diode Laser Diagnostic Studies of H2-Ar-O2 Microwave Plasmas Containing Methane or Methanol. Plasma Chemistry and Plasma Processing 19, 395–419 (1999). https://doi.org/10.1023/A:1021872420200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021872420200

Navigation