Log in

Cone Spline Surfaces and Spatial Arc Splines – a Sphere Geometric Approach

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Basic sphere geometric principles are used to analyze approximation schemes of developable surfaces with cone spline surfaces, i.e., G 1-surfaces composed of segments of right circular cones. These approximation schemes are geometrically equivalent to the approximation of spatial curves with G 1-arc splines, where the arcs are circles in an isotropic metric. Methods for isotropic biarcs and isotropic osculating arc splines are presented that are similar to their Euclidean counterparts. Sphere geometric methods simplify the proof that two sufficiently close osculating cones of a developable surface can be smoothly joined by a right circular cone segment. This theorem is fundamental for the construction of osculating cone spline surfaces. Finally, the analogous theorem for Euclidean osculating circular arc splines is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Benz, Geometrische Transformationen (BI-Wiss., Mannheim, 1992).

    Google Scholar 

  2. W. Blaschke, Vorlesungen über Differentialgeometrie III (Springer, Berlin, 1929).

    Google Scholar 

  3. T.E. Cecil, Lie Sphere Geometry (Springer, New York, 1992).

    Google Scholar 

  4. J.C. Clements and L.J. Leon, A fast accurate algorithm for the isometric map** of a developable surface, SIAM J. Math. Anal. 18 (1987) 966-971.

    Google Scholar 

  5. G. Farin, Curves and Surfaces for Computer Aided Geometric Design, 3rd ed. (Academic Press, Boston, 1992).

    Google Scholar 

  6. W. Fuhs and H. Stachel, Circular pipe connections, Comput. Graphics 12 (1988) 53-57.

    Google Scholar 

  7. B. Gurunathan and S.G. Dhande, Algorithms for development of certain classes of ruled surfaces, Comput. Graphics 11 (1987) 105-112.

    Google Scholar 

  8. J. Hoschek, Circular splines, Comput. Aided Design 24 (1992) 611-618.

    Google Scholar 

  9. E. Kreyszig, A new standard isometry of developable surfaces in CAD/CAM, SIAM J. Math. Anal. 25 (1994) 174-178.

    Google Scholar 

  10. S. Leopoldseder, Cone spline surfaces and spatial arc splines, Dissertation, Technische Universität Wien (1998).

  11. S. Leopoldseder, Algorithms on cone spline surfaces and spatial osculating arc splines, Comput. Aided Geom. Design 18 (2001) 505-530.

    Google Scholar 

  12. S. Leopoldseder and H. Pottmann, Approximation of developable surfaces with cone spline surfaces, Comput. Aided Design 30 (1998) 571-582.

    Google Scholar 

  13. D.S. Meek and D.J. Walton, Planar osculating arc splines, Comput. Aided Geom. Design 13 (1996) 653-671.

    Google Scholar 

  14. E. Müller, Vorlesungen über Darstellende Geometrie, II. Band: Die Zyklographie, herausgegeben von J.L. Krames (Franz Deuticke, Wien, 1929).

    Google Scholar 

  15. A.W. Nutbourne and R.R.Martin, Differential Geometry Applied to Curve and Surface Design. Vol. 1: Foundations (Ellis Horwood, Chichester, UK, 1988).

    Google Scholar 

  16. M. Peternell and H. Pottmann, A Laguerre geometric approach to rational offsets, Comput. Aided Geom. Design 15 (1998) 223-249.

    Google Scholar 

  17. H. Pottmann and G. Farin, Developable rational Bézier and B-spline surfaces, Comput. Aided Geom. Design 12 (1995) 513-531.

    Google Scholar 

  18. H. Pottmann and M. Peternell, Applications of Laguerre geometry in CAGD, Comput. Aided Geom. Design 15 (1998) 165-186.

    Google Scholar 

  19. H. Pottmann and J. Wallner, Computational Line Geometry (Springer, Berlin, 2001).

    Google Scholar 

  20. P. Redont, Representation and deformation of developable surfaces, Comput. Aided Design 21 (1989) 13-20.

    Google Scholar 

  21. H. Sachs, Isotrope Geometrie des Raumes (Vieweg, Braunschweig, 1990).

    Google Scholar 

  22. T.J. Sharrock, Biarcs in three dimensions, in: Mathematics of Surfaces II, ed. R.R. Martin (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  23. G. Weiss and P. Furtner, Computer-aided treatment of developable surfaces, Comput. Graphics 12 (1988) 39-51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leopoldseder, S. Cone Spline Surfaces and Spatial Arc Splines – a Sphere Geometric Approach. Advances in Computational Mathematics 17, 49–66 (2002). https://doi.org/10.1023/A:1015215802130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015215802130

Navigation