Log in

Preparation of lead titanate ultrafine powders from combined polymerisation and pyrolysis route

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead titanate (PbTiO3) nanopowders were prepared from a monomeric metallo-organic precursor through combined solid-state polymerisation and pyrolysis (CPP). This makes it possible to adjust the mean particle size in a wide range by just choosing the appropriate reaction temperature. This particular preparation route was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The size effects in the resulting PbTiO3 nanopowders were investigated by standard methods such as X-ray diffraction (XRD) and FT-Raman spectroscopy. By using the double Voigt method in analysing the XRD results, smaller mean particle size and narrower size distributions were found for powders prepared at lower reaction temperatures, with the tetragonality being reduced. Preliminary electron paramagnetic resonance (EPR) measurements demonstrate that paramagnetic chromium probe ions incorporate very well into the PbTiO3 lattice, particularly enabling corresponding high-field EPR measurements which have proven exceedingly informative in our previous investigations on Mn2+-doped barium titanate (BaTiO3) nanopowders. Moreover, the potential of the CPP route is enhanced to prepare perovskitic stoichiometric solutions for advanced practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. K. Akdogan, M. R. Leonard and A. Safari, in “Handbook of Low and High Dielectric Constant Materials,” Vol. 2, edited by H. S. Nalwa (Academic Press, San Diego, 1999) p. 61.

    Google Scholar 

  2. S. Wada, T. Suzuki and T. Noma, Jpn. J. Appl. Phys. 34 (1995) 5368.

    Google Scholar 

  3. B. Milsch_ and R. BÖttcher, Phys. Stat. Sol. (a) 133 (1992) 455.

    Google Scholar 

  4. H.-J. GlÄsel, E. Hartmann, R. Mehnert, D. Hirsch, R. BÖttcher and J. Hormes, Nucl. Instr. and Meth. B 151 (1999) 200.

    Google Scholar 

  5. H. Rumpf, J. Hormes, H. Modrow, H.-J. GlÄsel, E. Hartmann, E. Erdem and R. BÖttcher, J. Phys. Chem. B 105 (2001) 3415.

    Google Scholar 

  6. R. BÖttcher, H.-C. Semmelhack, G. VÖlkel, H.-J. GlÄsel and E. HARTMANN, Phys. Rev. B 62 (2000) 2085.

    Google Scholar 

  7. H.-J. GlÄsel, E. Hartmann, D. Hirsch, R. BÖttcher, J. Hormes and H. Rumpf, J. Mater. Sci. 34 (1999) 2319.

    Google Scholar 

  8. D. Fu, H. Suzuki and K. Ishikawa, Phys. Rev. B 62 (2000) 3125.

    Google Scholar 

  9. B. A. Hernandez, K. Chang, E. R. Fisher and P. E. Dorhout, Chem. Mater. 14 (2002) 480.

    Google Scholar 

  10. J. Fang, J. Wang, L. Gan and S. Ng, Mater. Lett. 52 (2002) 304.

    Google Scholar 

  11. S. O'brien, L. Brus and C. B. Murray, J. Amer. Chem. Soc. 123 (2001) 12085.

    Google Scholar 

  12. T. Yogo, H. Ukai, W. Sakamoto and S. Hirano, J. Mater. Res. 14 (1999) 3275.

    Google Scholar 

  13. A. R. Babu and A. V. Prasadarao, J. Mater. Sci. Lett. 16 (1997) 313.

    Google Scholar 

  14. A. P. Barranco, O. P. Martinez and D. K. Das-Gupta, J. Appl. Phys. 92 (2002) 1494.

    Google Scholar 

  15. J. Yin and W. Cao, ibid. 92 (2002) 444.

    Google Scholar 

  16. Z. Yu, C. Ang, R. Guo and A. S. Bhalla, ibid. 92 (2002) 1489.

    Google Scholar 

  17. F. M. Pontes, E. R. Leite, D. S. L. Pontes, E. Longo, E. M. S. Santos, S. Mergulhao, P. S. Pizani, F. Lanciotti, T. M. Boschi and J. A. Varela, ibid. 91 (2002) 5972.

    Google Scholar 

  18. V. V. Laguta, T. V. Antimirova, M. D. Glinchuk, I. P. Bykov, J. Rosa, M. Zaritskii and L. Jastrabik, J. Phys. C: Condens. Matter 9 (1997) 10041.

    Google Scholar 

  19. G. I. Dzardimalieva, A. S. Rozenberg and A. D. Pomagailo, Russ. Chem. Bull. 44 (1995) 858.

    Google Scholar 

  20. J. Brandrup and E. H. Immergut, “Polymer Handbook,” 3rd ed. (Wiley, New York, 1989) p. V/78.

    Google Scholar 

  21. D. Balzar and H. Lebbetter, J. Appl. Cryst. 26 (1993) 97.

    Google Scholar 

  22. S. A. Howard and R. L. Snyder, ibid. 22 (1989) 238.

    Google Scholar 

  23. D. Balzar, J. Res. Natl. Inst. Stand. Technol. 98 (1993) 321.

    Google Scholar 

  24. C. E. Krill and R. Birringer, Philos. Mag. A 77 (1998) 621.

    Google Scholar 

  25. S. Chattopadhyay, P. Ayyub, V. R. Palkar and M. Multani, Phys. Rev. B 52 (1995) 13177.

    Google Scholar 

  26. G. Burns and B. A. Scott, ibid. 7 (1973) 3088.

    Google Scholar 

  27. W. Ma, M. Zhang and Z. Lu, Phys. Stat. Sol. (a) 166 (1998) 811.

    Google Scholar 

  28. R. Heidler, W. Windsch, R. BÖttcher and C. Klimm, Chem. Phys. Lett. 175 (1990) 55.

    Google Scholar 

  29. R. BÖttcher, W. Brunner, B. Milsch, G. VÖlkel, W. Windsch and S. T. Kirillov, ibid. 129

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdem, E., Böttcher, R., Semmelhack, HC. et al. Preparation of lead titanate ultrafine powders from combined polymerisation and pyrolysis route. Journal of Materials Science 38, 3211–3217 (2003). https://doi.org/10.1023/A:1025117400687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025117400687

Keywords

Navigation