Log in

A multi-scale framework for effective elastic properties of porous materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents a statistical micromechanics-based multi-scale material modeling framework to predict the effective elastic moduli of porous materials. The present formulation differs from most of the existing theoretical models in that the interaction effects among the pores are directly accounted for by considering the pair-wise interaction and the statistical information of pore distribution is included by applying the ensemble volume averaging process. The theory of average fields is employed to derive the stress and strain concentration factor tensors that relate the local average fields to the global averages. Closed-form and analytical explicit expressions for the effective elastic moduli of porous materials are obtained in terms of the mechanical properties of the matrix material and porosity. The dependence of effective elastic properties on the porosity is investigated. Comparison of our theoretical prediction with the results of the published experimental data and other existing theoretical models is performed to illustrate the predictive capability of the proposed framework for porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Roberts and E. J. Garboczi, J. Amer. Ceram. Soc. 83(12) (2000) 3041.

    Google Scholar 

  2. M. A. Qidwai, P. B. Entchev, D. C. Lagoudas and V. G. Degiorgi, Int. J. Solids and Struc. 38 (2001) 8653.

    Google Scholar 

  3. R. Hill, J. Mech. and Phys. Solids 13(4) (1965) 213.

    Google Scholar 

  4. B. Budiansky, ibid. 13(4) (1965) 223.

    Google Scholar 

  5. R. W. Zimmerman, Mech. Mater. 12 (1991) 17.

    Google Scholar 

  6. T. Mori and K. Tanaka, Acta Metallurgica 21(5) (1973) 571.

    Google Scholar 

  7. R. W. Rice, J. Mater. Sci. 31 (1996) 1509.

    Google Scholar 

  8. C. T. Herakovich and S. C. Baxter, ibid. 31 (1999) 1595.

    Google Scholar 

  9. R. Hill, J. Mech. and Phys. Solids 48 (1963) 367.

    Google Scholar 

  10. G. J. Dvorak, in “Metal Matrix Composites: Mechanisms and Properties,” edited by R. K. Everett and R. J. Arsenualt (Academic Press, Boston, USA, 1991).

    Google Scholar 

  11. T. Mura, “Micromechanics of Defects in Solids,” 2nd ed. (Kluwer Academic Publishers, 1987).

  12. K. H. Tseng, Ph.D. Dissertation, Princeton University, Princeton, New Jersey, 1995.

    Google Scholar 

  13. R. L. Coble and W. D. Kingery, J. Amer. Ceram. Soc. 39(11) (1956) 377.

    Google Scholar 

  14. J. B. Walsh, W. F. Brace and A. W. England, ibid. 48(12) (1965) 605.

    Google Scholar 

  15. J. A. Haglund and O. Hunter, ibid. 56(6) (1973) 327.

    Google Scholar 

  16. O. Hunter, H. J. Korklan and R. R. Suchomel, ibid. 57(6) (1974) 267.

    Google Scholar 

  17. N. Ramakrishnan and V. S. Arunachalam, ibid. 76(11) (1993) 2745.

    Google Scholar 

  18. Z. Hashin, J. Appl. Mech. 29 (1962) 143.

    Google Scholar 

  19. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11 (1963) 127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Tseng, K.K. A multi-scale framework for effective elastic properties of porous materials. Journal of Materials Science 38, 3019–3027 (2003). https://doi.org/10.1023/A:1024736105732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024736105732

Keywords

Navigation