Log in

Interplay of Nuclear Magnetism and Superconductivity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ratio of nuclear saturation magnetization and superconducting critical field, μ 0 M sat / B S0*∈, classifies the strength of mutual influence of nuclear magnetism and superconductivity. In order to investigate the interplay of both phenomena for the three distinct cases ∈ ≪ 1, ∈ ≍ 1, and ∈ ≫ 1 we have measured the ac susceptibility of Al, of the intermetallic compound AuIn 2 , and of the metal hydride TiH 2.07 at ultralow temperatures, 17 μK ≤ T ≤ 1 K, as function of static field 0 ≤ B ≤ 15 mT. For Al, the interplay enables an absolute measurement of the nuclear magnetization. For AuIn 2 , we get a steep decrease of B S (T) and a broadening of the superconducting transition in its nuclear ferromagnetic phase. Surprisingly, the nuclear ferromagnetic state coexists with type-I superconductivity in AuIn 2. The metal hydride TiH 2.07 , which is under present investigation, is a good candidate to show reentrant superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg, Sov. Phys. JETP 4, 153 (1957).

    Google Scholar 

  2. B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Lett. 1, 92 (1958) and 1, 449 (1958).

    Google Scholar 

  3. O. Fischer, Magnetic Superconductors, Ferromagnetic Materials, Vol. 5, edited by K. H. J. Buschow and E. P. Wohlfarth, Elsevier Science Publishers B. V. 1990, London New York.

    Google Scholar 

  4. M. B. Maple, Physica B 215, 110 (1995).

    Google Scholar 

  5. A. A. Abrikosov and L. P. Gorkov, Sov. Phys. JETP 12, 1243 (1961).

    Google Scholar 

  6. P. Fulde and K. Maki, Phys. Rev. 141, 275 (1966).

    Google Scholar 

  7. L. N. Bulaevskii, A. I. Buzdin, M. L. Kulic, and S. V. Panjukov, Advances in Physics 34, 175 (1984).

    Google Scholar 

  8. W. Wendler, P. Smeibidl, and F. Pobell, J. Low Temp. Phys. 108, 291 (1997).

    Google Scholar 

  9. T. Herrmannsdörfer, P. Smeibidl, B. Schröder-Smeibidl, and F. Pobell, Phys. Rev. Lett. 74, 1665 (1995); T. Herrmannsdörfer and F. Pobell, J. Low Temp. Phys. 100, 253 (1995).

    Google Scholar 

  10. S. Rehmann, T. Herrmannsdörfer, and F. Pobell, Phys. Rev. Lett. 78, 1122 (1997).

    Google Scholar 

  11. Details on AuIn2 will be reported elsewhere.

  12. P. Fulde and R. A. Ferrel, Phys. Rev. 135, 550 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmannsdörfer, T., Rehmann, S., Seibold, M. et al. Interplay of Nuclear Magnetism and Superconductivity. Journal of Low Temperature Physics 110, 405–410 (1998). https://doi.org/10.1023/A:1022565607158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022565607158

Keywords

Navigation