Log in

The RHESSI Imaging Concept

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) observes solar hard X-rays and gamma-rays from 3 keV to 17 MeV with spatial resolution as high as 2.3 arc sec. Instead of focusing optics, imaging is based on nine rotating modulation collimators that time-modulate the incident flux as the spacecraft rotates. Starting from the arrival time of individual photons, ground-based software then uses the modulated signals to reconstruct images of the source. The purpose of this paper is to convey both an intuitive feel and the mathematical basis for this imaging process. Following a review of the relevant hardware, the imaging principles and the basic back-projection method are described, along with their relation to Fourier transforms. Several specific algorithms (Clean, MEM, Pixons and Forward-Fitting) applicable to RHESSI imaging are briefly described. The characteristic strengths and weaknesses of this type of imaging are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, D. and Metcalf, T. R.: 1997, Astrophys. J. 489, 422.

    Article  ADS  Google Scholar 

  • Aschwanden, M., Schmahl, E. J. and the RHESSI Team: 2002, Solar Phys., this volume.

  • Aschwanden, M., Fletcher, Sakao, Kosugi, T., and Hudson, H. S.: 1999, Astrophys. J. 517, 977.

    Article  ADS  Google Scholar 

  • Cash, W.: 1979, Astrophys. J. 228, 939.

    Article  ADS  Google Scholar 

  • Cornwell, T. J.: 1984, in J. A. Roberts (ed.), Indirect Imaging, Proc. IAU/URSI Symp., Cambridge University Press, Cambridge, p. 291.

    Google Scholar 

  • Crannell, C. J.: 1994, American Institute of Aeronautics and Astronautics: Washington DC, AIAA-94–0299.

  • Crannell, C. J., Hurford, G. J., Orwig, L. E., and Prince, T. A.: 1986, SPIE Proc. 571, 142.

    ADS  Google Scholar 

  • Curtis, D.W. et al.: 2002, Solar Phys., this volume.

  • Datlowe, D. W.: 1975, Space Sci. Instrument. 1, 389.

    ADS  Google Scholar 

  • Durouchoux, P., Hudson, H., Hurford, G., Hurley, K., Matteson, J., and Orsal, E.: 1983, Astron. Astrophys. 120, 150.

    ADS  Google Scholar 

  • Enome, S.: 1982, Adv. Space Res. 2/11, 201.

    Article  ADS  Google Scholar 

  • Fivian, M., Hemmeck, R., Mchedlishvili and Zehnder, A.: 2002, Solar Phys., this volume.

  • Gull, S. F. and Skilling, J.: 1984, IEE Proc. 131, 646.

    Google Scholar 

  • Högbom, J. A., 1974: Astron. Astrophys. 15, 417.

    Google Scholar 

  • Hurford, G. J. and Curtis, D.: 2002, Solar Phys., this volume.

  • Kilner, J. R. and Nakano, G. H.: 1989, SPIE Proc. 1159, 27.

    ADS  Google Scholar 

  • Kosugi, T. et al.: 1991, Solar Phys. 136, 17.

    Article  ADS  Google Scholar 

  • Lin, R. et al., 2002: Solar Phys., this volume.

  • Makishima, K. et al.: 1977, in K. A. van der Hucht and G. Vaiana (eds.), New Instrumentation for Space Astronomy, Pergamon Press, New York.

    Google Scholar 

  • Mertz, L. N., 1967: Microwave Research Institute Symposia Series, Proc. Symp. on Modern Optics 17 Polytechnic Institute of Brooklyn, New York, p. 277.

    Google Scholar 

  • Mertz, L. N., Nakano, G. H., and Kilner, J. R.: 1986, J. Opt. Soc. Am. 466, 585.

    Google Scholar 

  • Metcalf, T. R. et al., 1996: Astrophys. J. 466, 585.

    Article  ADS  Google Scholar 

  • Murphy, M. J.: 1990, Nucl. Instr. Methods Phys. Res. A290, 551.

    Article  ADS  Google Scholar 

  • Ohki, K. et al.: 1982, Proc. Hinotori Symp. Solar Flares, ISAS, Tokyo, Japan, p. 102.

    Google Scholar 

  • Prince, T. A., Hurford, G. J., Hudson, H. S., and Crannell, C. J.: 1988, Solar Phys. 118, 269.

    Article  ADS  Google Scholar 

  • Puetter, R. C., 1995: Int. J. Image Systems Technol. 6, 314.

    Google Scholar 

  • Sato, J.: 1998, Ph.D. Thesis, NAO.

  • Sato, J., Kosugi, T., and Makishima, K.: 1999, Publ. Astron. Soc. Japan 51, 127.

    ADS  Google Scholar 

  • Schmahl, E. J. and Hurford, G. J.: 2002, Solar Phys., this volume.

  • Schwartz, R. et al.: 2002, Solar Phys., this volume.

  • Sivia, D. S.: 1996, Data Analysis, a Bayesian Tutorial, Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Schnopper, H. W., Thompson, R. I., and Watt, S.: 1968, Space Sci. Rev. 8, 534.

    Article  ADS  Google Scholar 

  • Schnopper, H. W. et al.: 1970, Astrophys. J. 161L, 161.

    Article  ADS  Google Scholar 

  • Smith, D.M. et al., 2002, Solar Phys., this volume.

  • Van Beek, H. F., Hoyng, P., Lafleur, B., and Simnett, G. M.: 1980, Solar Phys. 65, 39.

    Article  ADS  Google Scholar 

  • Zehnder, A. et al.: 2002, SPIE Proc. 4853, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurford, G., Schmahl, E., Schwartz, R. et al. The RHESSI Imaging Concept. Sol Phys 210, 61–86 (2002). https://doi.org/10.1023/A:1022436213688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022436213688

Keywords

Navigation