Log in

Microdynamics of the Early Stages of Liquid/Plate Contact under Highly Nonequilibrium Conditions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A microhydrodynamic approach (in which the dissipative coefficients are calculated using the molecular model of lattice gas) is used to study the upward flow of a liquid film over a hydrophilic plate immersed partially in a liquid and to investigate the formation of a meniscus on this plate. The early stages of the unsteady-state transport of a dense fluid over the plate surface (argon–carbon system) are studied numerically. The method enables one to investigate the distributions of molecules and their velocities at different distances from the plate surface. The variation of the concentration fields from the flow origination to the establishment of a quasi-steady state is examined. The contact angle velocity is found (this angle determines the meniscus boundary). It is shown that two types of contact angles can be distinguished in the meniscus-motion dynamics, which correspond to two different molecular scales. The mechanism of the formation of a liquid film and the upward and downward flows of the film on the plate surface at the molecular level (on small spatial scales, where gravity makes no contribution) are discussed. The evolution of a cylindrical drop over the open plate surface is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Deryagin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily(Surface Forces), Moscow: Nauka, 1985.

    Google Scholar 

  2. Timofeev, D.P., Kinetika adsorbtsii(Adsorption Kinetics), Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  3. Heifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh sredakh(Multiphase Processes in Porous Media), Moscow: Khimiya, 1982.

    Google Scholar 

  4. Carman, P.C., Flow of Gases through Porous Media, London: Butterworths, 1956.

    Google Scholar 

  5. Satterfield, Ch.N., Mass Transfer in Heterogeneous Catalysis, Cambridge: MIT Press, 1970.

    Google Scholar 

  6. Mason, E. and Malinauskas, A., Transport in Porous Media: The Dusty Gas Model, Amsterdam: Elsevier, 1983.

    Google Scholar 

  7. Nigmatulin, R.I., Osnovy mekhaniki geterogennykh sred(Mechanics of Heterogeneous Media), Moscow: Nauka, 1973.

    Google Scholar 

  8. Wettability, Berg, J.C., Ed., New York: Marcel Dekker, 1993.

    Google Scholar 

  9. Blake, T.D., Clarke, A., De Coninck, J., and Ruijter, M.J., Contact Angle Relaxation during Droplet Spreading: Comparison between Molecular Kinetic Theory and Molecular Dynamics, Langmuir, 1997, vol. 13, p. 2164.

    Google Scholar 

  10. Neogi, P., Dynamics of an Adsorbed Patch and a Model for Spreading of Films of Ultralow Thickness, J. Chem. Phys., 1995, vol. 105, p. 8909.

    Google Scholar 

  11. Diez, J.A., Gratton, R., Thomas, L.P., and Marino, B., J. Colloid Interface Sci., 1994, vol. 168, p. 15.

    Google Scholar 

  12. Cherry, B.W. and Holmes, C.M., Kinetics of Wetting of Surfaces by Polymers, J. Colloid Interface Sci., 1969, vol. 29, p. 174.

    Google Scholar 

  13. Shapiro, G.L., Zh. Prikl. Mekh. Tekh. Fiz., 1984, vol. 14, p. 321.

    Google Scholar 

  14. Emelyanenko, A.M., Boinovich, L.B., and De Coninck, J., Equilibrium Wetting in SOS Model. The Role of Long-Range Surface Forces, Adv. Colloid. Interface Sci., 1995, vol. 252, p. 85.

    Google Scholar 

  15. Tovbin, Yu.K., Closure of Transfer Equations for Flows with a Widely Varying Particle Concentration, Sovremennaya khimicheskaya fizika(Modern Chemical Physics), Moscow: Mosk. Gos. Univ., 1998, p. 145.

    Google Scholar 

  16. Tovbin, Yu.K., Gas and Liquid Transfer in Narrow Pores, Teor. Osn. Khim. Tekhnol., 2002, vol. 36, no. 3, p. 240.

    Google Scholar 

  17. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956.

    Google Scholar 

  18. Tovbin, Yu.K., Teoriya fiziko-khimicheskikh protsessov na granitse gaz–tverdoe telo(Theory of Physicochemical Processes at the Gas–Solid Interface), Moscow: Nauka, 1990.

    Google Scholar 

  19. Tovbin, Yu.K. and Tugazakov, R.Ya., Dynamics of the Flow of a Dense Fluid in Narrow Pores, Teor. Osn. Khim. Tekhnol., 2000, vol. 34, no. 2, p. 117.

    Google Scholar 

  20. Tovbin, Yu.K., Tugazakov, R.Ya., and Komarov, V.N., Numerical Study of Dense Fluid Flow in Narrow Pores, Teor. Osn. Khim. Tekhnol., 2002, vol. 36, no. 2, p. 115.

    Google Scholar 

  21. Votyakov, E.V. and Tovbin, Yu.K., Effect of the Chemical and Structural Inhomogeneity of the Pore Walls on the Adsorption Isotherms, Zh. Fiz. Khim., 1994, vol. 68, no. 2, p. 287.

    Google Scholar 

  22. Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1976.

    Google Scholar 

  23. Sokolowski, S. and Fischer, J., Lennard–Jones Mixture in Slit-like Pores: A Comparison of Simulation and Density Functional Theory, Mol. Phys., 1990, vol. 71, p. 393.

    Google Scholar 

  24. Lax, P. and Wendroff, B., Systems of Conservation Laws, Commun. Pure Appl. Math., 1960, vol. 13, p. 217.

    Google Scholar 

  25. Tugazakov, R.Ya., Analyzing the Problem of the Disappearance of a Two-Dimensional Discontinuity, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1989, no. 2, p. 159.

  26. Landau, L.D. and Livshits, E.M., Teoreticheskaya fizika(Theoretical Physics), vol. 6: Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1986.

    Google Scholar 

  27. Tovbin, Yu.K. and Vasyutkin, N.F., Concentration Dependence of the Self-Diffusion Coefficient and Viscosity of Adsorbate in Narrow Slitlike Pores, Izv. Akad. Nauk, Ser. Khim., 2001, no. 9, p. 1496.

  28. Tovbin, Yu.K. and Vasyutkin, N.F., Concentration Dependence of the Dynamic Properties of Adsorbate in Narrow Slitlike Pores, Zh. Fiz. Khim., 2002, vol. 76, no. 1, p. 78.

    Google Scholar 

  29. Ishii, K. and Liu, S.H., Interaction of Decaying Vortex Ring with a Rotational Background Flow Bounded by Solid Wall, AIAA Paper 87-134 2, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tovbin, Y.K., Tugazakov, R.Y. Microdynamics of the Early Stages of Liquid/Plate Contact under Highly Nonequilibrium Conditions. Theoretical Foundations of Chemical Engineering 36, 511–523 (2002). https://doi.org/10.1023/A:1021293129282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021293129282

Keywords

Navigation