Log in

Nitric Oxide Storage in the Cardiovascular System

  • Published:
Biology Bulletin of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a highly reactive substance with short lifetime. In conditions of a living organism NO can be bound by the complexes used for transport and intracellular storage of NO. The main biological forms of NO store include S-nitrosothiols and dinitrosyl iron complexes capable of interconversion. The NO store formed by these complexes in the vascular wall, on the one hand, provides for protection from excessive free NO after its overproduction and, on the other hand, can be an additional NO source when it is deficient. Apparently, the efficiency of NO storage is genetically determined and corresponds to the inherited level of NO production in the organism. Controlled modulation of formation and dissociation of the NO store is a promising trend for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alencar, J.L., Stoclet, J.C., and Muller, B., Formation of Releasable NO Stores on Tissue Thiols in Blood Vessels: Differential Effect of NO Donors, Fund. Clin. Pharmacol., 2001, vol. 15, p. 085.

    Google Scholar 

  • Arnell, D.A., Da, B.J., and Stamler, J.S., Diethyl Dithiocarbamate-Induced Decomposition of S-Nitrosothiols, Nitric Oxide, 1997, vol. 1, pp. 56–64.

    Google Scholar 

  • Assreuy, J., Cunha, F.Q., Liew, F.Y., and Moncada, S., Feedback Inhibition of Nitric Oxide Synthase Activity by Nitric Oxide, Br. J. Pharmacol., 1993, vol. 108, pp. 833–837.

    Google Scholar 

  • Boese, M., Mordvintcev, P.I., Vanin, A.F., et al., S-Nitrosation of Serum Albumin by Dinitrosyl-Iron Complex J. Biol. Chem., 1995, vol. 270, pp. 29244–29249.

    Google Scholar 

  • Bolotina, V.M., Najibi, S., Palacino, J.J., et al., Nitric Oxide Directly Activated Calcium-Dependent Potassium Channels in Vascular Smooth Muscle, Nature, 1994, vol. 368, pp. 850–853.

    Google Scholar 

  • Butler, A.R., Glidewell, C., Hyde, A.R., and Walton, J.C., Formation of Mononuclear Iron Nitrosyl Complexes From Diamagnetic Di-and Tetranuclear Iron-Sulphur Nitrosyls: Characterization by EPR Spectroscopy and Study of Thiolate and Nitrosyl Ligand Exchange Reactions, Polyhedron, 1985, vol. 4, pp. 797–809.

    Google Scholar 

  • Chamulitrat, W., Jordan, S.I., Mason, R.P., et al., Arch. Biochem. Biophys., 1995, vol. 316, pp. 30–37.

    Google Scholar 

  • Colasanti, M. and Suzuki, H., The Dual Personality of NO, Trends Pharmacol. Sci., 2000, vol. 21, pp. 249–252.

    Google Scholar 

  • Demiryurek, A.T. and Wadsworth, R.M., Superoxide in the Pulmonary Circulation, Pharmacol. Ther., 1999, vol. 84, pp.355–365.

    Google Scholar 

  • Elliott, S.N. and Wallace, J.L., Nitric Oxide: A Regulator of Mucosal Defense and Injury, J. Gastroenterol., 1998, vol. 33, pp. 792–803.

    Google Scholar 

  • Ewing, J.F., Young, D.V., Janero, D.R., et al., Nitrosylated Bovine Serum Albumin Derivatives as Pharmacologically Active Nitric Oxide Congeners, J. Pharmacol. Exp. Ther., 1997, vol. 283, pp. 947–954.

    Google Scholar 

  • Flitney, F.W., Megson, I.L., Flitney, D.E., and Butler, A.R., Iron-Sulphur Cluster Nitrosyls, a Novel Class of Nitric Oxide Generator: Mechanism of Vasodilator Action on Rat Isolated Tail Artery, Br. J. Pharmacol., 1992, vol. 107, pp.842–848.

    Google Scholar 

  • Fox-Robichaud, A., Payne, D., Hasan, S.U., et al., Inhaled NO as a Viable Antiadhesive Therapy for Ischemia/Reperfusion Injury of Distal Microvascular Beds, J. Clin. Invest., 1998, vol. 101, pp. 2497–2505.

    Google Scholar 

  • Frank, S., Zacharowski, K., Wray, G.M., et al., Identification of Copper/Zinc Superoxide Dismutase as a Novel Nitric Oxide-Regulated Gene in Rat Glomerular Mesangial Cells and Kidneys of Endotoxemic Rats, FASEB J., 1999, vol. 13, pp. 869–882.

    Google Scholar 

  • Funai, E.F., Davidson, A., Seligman, S.P., and Finlay, T.H., S-Nitrohemoglobin in the Fetal Circulation May Represent a Cycle for Blood Pressure Regulation, Biochem. Biophys. Res. Commun., 1997, vol. 239, pp. 875–877.

    Google Scholar 

  • Furchgott, R.F. and Zawadski, J.V., The Obligatory Role of Endothelial Cells in the Relaxation of Arterial Smooth Muscle by Acetylchloline, Nature, 1980, vol. 288, pp. 373–376.

    Google Scholar 

  • Furchgott, R., Martin, W., Cherry, P.D., et al., Endothelium-Dependent Relaxation, and cGMP., Vascular Neuroeffector Mechanisms, Bevan, J.A., Godfraind, T., Maxwell, R.A., and Stoclet, J.C., Eds., Amsterdam: Elsevier, 1985, pp. 105–114.

    Google Scholar 

  • Galagan, M.E., Kiladze, S.V., and Vanin, A.F., Reaction between Dinitrosyl-Iron Complexes and Diethyldithiocarbamate in the Blood of Anesthetized Rats: Specific Manifestation at the Physicochemical and Physiological Levels, Biofizika, 1997, vol. 42, pp. 681–686.

    Google Scholar 

  • Galagan, M.E., Oranovskaya, E.V., Mordvintsev, P.I., et al., Hypotensive Effect of Dinitrosyl-Iron Complexes in the Experiments on Conscious Animal, Byul. VKNTs Akad. Med. Nauk SSSR, 1988, no. 2, pp. 75–80.

  • Gow, A.J. and Stamler, J.S., Reactions Between Nitric Oxide and Haemoglobin Under Physiological Conditions, Nature, 1998, vol. 391, pp. 169–173.

    Google Scholar 

  • Gyorgy, K., Muller, B., Vegh, A., et al., Triggering Role of Nitric Oxide in the Delayed Protective Effect of Monophosphoryl Lipid a in Rat Heart, Br. J. Pharmacol., 1999, vol. 127, pp. 1892–1898.

    Google Scholar 

  • Henry, Y., Lepoivre, M., Drapier, J.C., et al., EPR Characterization of Molecular Targets for NO in Mammalian Cells and Organelles, FASEB J., 1993, vol. 7, pp. 1124–1134.

    Google Scholar 

  • Hogg, N., Singh, R.J., Konorev, E., et al., S-Nitrosoglutathione as a Substrate for Gamma-Glutamyl Transpeptidase, Biochem. J., 1997, vol. 323, pp. 477–481.

    Google Scholar 

  • Ignarro, L.J., Buga, G.M., Wood, K.S., et al., Endothelium-Derived Relaxing Factor Produced and Released from Artery and Vein Is Nitric Oxide, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 9265–9269.

    Google Scholar 

  • Jia, I., Bonaventura, C., Bonaventura, J., and Stamler, J.S., S-Nitrosohaemoglobin: a Dynamic Activity of Blood Involved in Vascular Control, Nature, 1996, vol. 380, pp. 221–226.

    Google Scholar 

  • Jourd'heuil, D., Gray, L., and Grisham, M.B., S-Nitrosothiol Formation in Blood of Lipopolysaccharide-Treated Rats, Biochem. Biophys. Res. Commun., 2000, vol. 273, pp. 22–26.

    Google Scholar 

  • Kakuyama, M., Vallance, P., and Ahluwalia, A., Endothelium-Dependent Sensory NANC Vasodilatation: Involvement of ATP, cGRP and a Possible NO Store, Br. J. Pharmacol., 1998, vol. 123, pp. 310–316.

    Google Scholar 

  • Karlsson, J.O., Axelsson, K.K., and Andersson, R.G.G., Effect of Ultraviolet Radiation on the Tension and cGMP Level of Bovine Mesenteric Arteries, Life Sci., 1984, vol. 34, pp. 1555–1563.

    Google Scholar 

  • Kleschyov, A.L., Muller, B., and Stoclet, J.-C., Nitric Oxide Store as Dinitrosyl-Iron Complexes in Lipopolysaccharide-Treated Vessels: Localization and Mechanism of Formation, Br. J. Pharmacol., 1997, Suppl., pp. 120–190.

  • Kleschyov, A.L., Muller, B., Keravis, T., et al., Adventitia-Derived Nitric Oxide in Rat Aortas Exposed to Endotoxin: Cell Origin and Functional Consequences, Am. J. Physiol., 2000, vol. 279, pp. H2743–H2751.

    Google Scholar 

  • Kleshchev, A.L., Mordvintsev, P.I., and Vanin, A.F., Role of Nitric Oxide in Hypotensive Effect of Nitrosyl Iron Complexes in Animal Organism, Studia Biophys., 1985, vol. 105, pp. 93–102.

    Google Scholar 

  • Kleshchev, A.L., Mordvintsev, P.I., Vanin, A.F., and Sedov,K.R., Formation of Physiologically Active Store of Nitric Oxide in Animal Organism, Byul. Sib. Otd. Akad. Med. Nauk SSSR, 1988, no. 2, pp. 41–44.

  • Koch, M.A., Hasser, E.M., and Schadt, J.C., Influence of Nitric Oxide on the Hemodynamic Response to Hemorrhage in Conscious Rabbits, Am. J. Physiol., 1995, vol. 37, pp. R171–R182.

    Google Scholar 

  • Lancaster, J.R. and Hibbs, J.B., EPR Demonstration of Iron-Nitrosyl Complex Formation by Cytotoxic Activated Macrophages, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp.1223–1241.

    Google Scholar 

  • Lancaster, J.R., Stimulation of the Diffusion and Reaction of Endogenously Produced Nitric Oxide, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 8137–8141.

    Google Scholar 

  • Lapshin, A.V., Manukhina, E.B., Meerson, F.Z., et al., Decreased Content of Nitric Oxide in Rat Organs After Adaptation to Intermittent Hypoxia, Hypoxia Medical J, 1995, no. 1, pp. 3–5.

  • Li, H. and Forstermann, U., Nitric Oxide in the Pathogenesis of Vascular Disease, J. Pathol., 2000, vol. 190, pp. 244–254.

    Google Scholar 

  • Lind, L., Granstam, S.-O., and Millgard, J., Endothelium-Dependent Vasodilation in Hypertension: a Review, Blood Pressure, 2000, vol. 9, pp. 4–15.

    Google Scholar 

  • Liu, Z., Nakatsu, K., Brien, J.F., et al., Selective Sequestration of Nitric Oxide by Subcellular Components of Vascular Smooth Muscle and Platelets: Relationship to Nitric Oxide Stimulation of the Soluble Guanylyl Cyclase, Can. J. Physiol. Pharmacol., 1993, vol. 71, pp. 938–945.

    Google Scholar 

  • Lobysheva, I.I., Serezhenkov, V.A., and Vanin, A.F., Interaction of Peroxynitrite and Hydrogen Peroxide with Thiol-containing Dinitrosyl Iron Complexes, Biokhimiya, 1999, vol. 64, pp. 153–158.

    Google Scholar 

  • Malyshev, I.Yu., Malenyuk, E.B., Manukhina, E.B., et al., Long-term Cardioprotective Effect of Nitric Oxide: the Role of HSP70, Byull. Eksp. Biol. Med., 1998, no. 1, pp. 23–26.

  • Malyshev, I.Yu., Manukhina, E.B., Mikoyan, V.D., et al., Nitric Oxide Is Involved in Heat-Induced HSP70 Accumulation, FEBS Lett., 1995, V. 370, pp.159–162.

    Google Scholar 

  • Malyshev, I.Yu., Zenina, T.A., Golubeva, L.Yu., et al., NO Dependent Mechanisms of Adaptation to Hypoxia, Nitric Oxide, 1999, vol. 3, pp. 105–113.

    Google Scholar 

  • Manukhina, E.B., Lapshin, A.V., and Meerson, F.Z., Effect of Adaptation to Intermittent Hypoxia on Post-infarction Fall of Blood Pressure and Hyperactivation of the Endothelium, Fiziol. Zhurn. (Kiev), 1991, vol. 37, no. 3, pp. 98–105.

    Google Scholar 

  • Manukhina, E.B., Lapshin, A.V., Meerson, F.Z., et al., Effect of Adaptation to Physical Load on Endothelium-mediated Responses of the Vessels and NO Production in Rats, Fiziol. zhurn. im. I.M. Sechenova, 1996a, vol. 82, no. 7, p. 54–60.

    Google Scholar 

  • Manukhina, E.B., Malyshev, I.Yu., Mikoyan, V.D., et al., Increased Production of Nitric Oxide in Rat Tissues during Heat Shock, Byull. eksper. biol. med., 1996b, no. 5, p. 520–523.

  • Manukhina, E.B., Pokidyshev, D.A., Malenyuk, E.B., et al., Protective Effect of Nitric Oxide during Heat Shock, Izv. Ross. Akad. Nauk, Ser. Biol., 1997b, no. 1, p. 54–58.

  • Manukhina, E.B., Malyshev, I.Yu., Malenyuk, E.B., et al., Hypotensive Effect and Tissue Distribution of Nitric Oxide Donor—Dinitrosyl Iron Complexes, Byull. Eksp. Biol. Med., 1998, no. 1, pp. 30–33.

  • Manukhina, E.B., Malyshev, I.Yu., Smirin, B.V., et al., Production and Storage of Nitric Oxide in Adaptation to Hypoxia, Nitric Oxide, 1999, vol. 3, pp. 393–401.

    Google Scholar 

  • Manukhina, E.B., Mashina, S.Yu., Smirin, B.V., et al., Role of Nitric Oxide in Adaptation to Hypoxia and Adaptive Defense, Physiol. Res., 2000, vol. 49, pp. 89–97.

    Google Scholar 

  • Mashina, S.Yu., Smirin, B.V., Pokidyshev, D.A., et al., The Role of Preventing Nitric Oxide Deficiency in the Antihypertensive Effect of Adaptation to Hypoxia, Izv. Ross. Akad. Nauk, Ser. Biol., 2001, no. 5, pp. 593–601.

  • Mayer, B., Pfeiffer, S., Schrammel, A., et al., A New Pathway of Nitric Oxide/Cyclic GMP Signaling Involving S-Nitrosoglutathione, J. Biol. Chem., 1998, vol. 273, pp. 3264–3270.

    Google Scholar 

  • Meerson, F.Z., Mordvintcev, P.I., Manukhina, E.B., et al., Increased Nitric Oxide Production in the Organism in Adaptation to Short-Term Stress Exposure, The Biology of Nitric Oxide. Part 3. Clinical and Physiological Aspects, Moncada,S., Feelish, M., Busse, R., and Higgs, E.A., Eds., London: Portland Press, 1994, pp. 182–185.

    Google Scholar 

  • Megson, I.L., Flitney, F.W., Bates, J., and Webster, R., Repriming of Vascular Smooth Muscle Photorelaxation Is Dependent upon Endothelium-Derived Nitric Oxide, Endothelium, 1995, vol. 3, pp. 39–46.

    Google Scholar 

  • Megson, I.L., Greig, I.R., Gray, G.A., et al., Prolonged Effect of a Novel S-Nitrosated Glyco-Amino Acid in Endothelium-Denuded Rat Femoral Arteries: Potential as a Slow Release Nitric Oxide Donor Drug, Br. J. Pharmacol., 1997, vol. 122, pp. 1617–1624.

    Google Scholar 

  • Megson, I.L., Holme, S.A., and Magid, K.S., Selective Modifiers of Glutathione Biosynthesis and Repriming of Vascular Smooth Muscle Photorelaxation, Br. J. Pharmacol., 2000, vol. 130, pp. 1575–1580.

    Google Scholar 

  • Mikoyan, V.D., Kubrina, L.N., Manukhina, E.B., et al., Differences in NO Synthesis Induction after Heat Shock in Various Rat Populations, Byull. Eksp. Biol. Med., 1996, no. 6, pp. 634–637.

  • Mitsuhata, H., Takeuchi, H., Saitoh, J., et al., An Inhibitor of Nitric Oxide Synthase, N(omega)-Nitro-L-Arginine-Methyl Ester, Attenuates Hypotension but Does Not Improve Cardiac Depression in Anaphylaxis in Dogs, Shock, 1995, vol. 3, pp. 447–453.

    Google Scholar 

  • Moncada, S. and Higgs, E.A., Molecular Mechanisms and Therapeutic Strategies Related to Nitric Oxide, FASEB J., 1995, vol. 9, pp. 1319–1330.

    Google Scholar 

  • Mordvintsev, P.I., Putintsev, M.D., Galagan, M.E., et al., Hypotensive Activity of Dinitrosyl Iron–Protein Complexes in Anesthetized Animals, Byul. VKNTs Akad. Med. Nauk SSSR, 1988, no. 1, pp. 46–50.

  • Muller, B., Kleschyov, A.L., and Stoclet, J.-C., Evidence for N-Acetylcysteine-Sensitive Nitric Oxide Storage as Dinitrosyl Iron Complexes in Lipopolysaccharide-Treated Rat Aorta, Br. J. Pharmacol., 1996, vol. 119, pp. 1281–1285.

    Google Scholar 

  • Muller, B., Kleschyov, A.L., Malblanc, S., and Stoclet, J.-C., Formation of Nitric Oxide Stores in Vascular Tissue, Fundam. Clin. Pharmacol, 1998a, vol. 12, p. 351.

    Google Scholar 

  • Muller, B., Kleschyov, A.L., Malblanc, S., and Stoclet, J.-C., Nitric Oxide-Related Cyclic GMP-Independent Relaxing Effect of N-Acetylcysteine in Lipopolysaccharide-Treated Rat Aorta, Br. J. Pharmacol., 1998b, vol. 123, pp. 1221–1229.

    Google Scholar 

  • Muller, B., Kleschyov, A.L., Gyorgy, K., and Stoclet, J.-C., Inducible NO Synthase Activity in Blood Vessels and Heart: New Insight into Cell Origin and Consequences, Physiol. Res., 2000, vol. 49, pp. 19–26.

    Google Scholar 

  • Mülsch, A., Mordvintcev, P., Vanin, A.F., and Busse, R., The Potent Vasodilating and Guanylyl Cyclase Activating Dinitrosyl-Iron (II) Complex Is Stored in a Protein-Bound Form in Vascular Tissue and Is Released by Thiols, FEBS Lett., 1991, vol. 294, pp. 252–256.

    Google Scholar 

  • Mülsch, A., Mordvintcev, P., and Vanin, A., Quantification of Nitric Oxide in Biological Samples by Electron Spin Resonance Spectrometry, Neuroprotocols, 1992a, vol. 1, pp. 165–173.

    Google Scholar 

  • Mülsch, A., Vanin, A., Mordvintcev, P., et al., NO Accounts Completely for the Oxygenated Nitrogen Species Generated by Enzymic L-Arginine Oxygenation, Biochem. J., 1992b, vol. 288, pp. 597–603.

    Google Scholar 

  • Myers, P.R., Minor, R.L., Guerra, R., et al., Vasorelaxant Properties of the Endothelium-Derived Relaxing Factor More Closely Resemble S-Nitrosocysteine than Nitric Oxide, Nature, 1990, vol. 345, pp. 161–163.

    Google Scholar 

  • Nelson, D.W., Brown, J.M., Banerjee, A., et al., Pretreatment with a Nontoxic Derivative of Endotoxin Induces Functional Protection against Cardiac Ischemia/Reperfusion Injury, Surgery, 1991, vol. 110, pp. 365–369.

    Google Scholar 

  • Nishida, K., Ohta, Y., and Ishiguro, I., Role of Gastric Mucosal Constitutive and Inducible Nitric Oxide, Biochem. Biophys. Res. Commun., 1997, vol. 236, pp. 275–279.

    Google Scholar 

  • Palmer, R.M., Ferrige, A.G., and Moncada, S., Nitric Oxide Release Accounts for the Biological Activity of Endothelium-Derived Relaxing Factor, Nature, 1987, vol. 327, pp.524–526.

    Google Scholar 

  • Pellat, C., Henry, Y., and Drapier, J.-C., IFN-γ-Activated Macrophages: Detection by Electron Paramagnetic Resonance of Complexes Between L-Arginine-Derived Nitric Oxide and Non-Heme Iron Proteins, Biochem. Biophys. Res. Commun., 1990, vol. 166, pp. 119–125.

    Google Scholar 

  • Pshennikova, M.G., Smirin, B.V., Bondarenko, O.N., et al., Nitric Oxide Storage in Different Rat Strains and Its Role in the Antistress Effect of Adaptation to Hypoxia, Ross. Fiziol. Zhurn. im. I.M. Sechenova, 2000, vol. 86, no. 2, pp. 174–181.

    Google Scholar 

  • Sato, I. and Murota, S., Paracrine Function of Endothelium-Derived Nitric Oxide, Life Sci., 1995, vol. 13, pp. 1079–1087.

    Google Scholar 

  • Scharfstein, J.S., Keaney, J.F., Slivka, A., et al., In vivo Transfer of Nitric Oxide between a Plasma Protein-Bound Reservoir and Low Molecular Weight Thiols, J. Clin. Invest., 1994, vol. 94, pp. 1432–1439.

    Google Scholar 

  • Shikano, K., Long, C.J., Ohlstein, E.H., and Berkowitz, B.A., Comparative Pharmacology of EDRF and Nitric Oxide, J. Pharmacol. Exp. Ther., 1988, vol. 247, pp. 873–881.

    Google Scholar 

  • Silva-Santos da, E.J. and Assreuy, J., Long-Lasting Changes of Rat Blood Pressure to Vasoconstrictors and Vasodilators Induced by Nitric Oxide Donor Infusion: Involvement of Potassium Channels, J. Pharmacol. Exp. Ther., 1999, vol. 290, pp. 380–387.

    Google Scholar 

  • Smirin, B.V., Vanin, A.F., Malyshev, I.Yu., et al., Nitric Oxide Storage in Blood Vessels in vivo, Byul. Eksperim. Biol. Med., 1999, vol. 127, no. 6, pp.629–632.

    Google Scholar 

  • Smirin, B.V., Pokidyshev, D.A., Malyshev, I.Yu., et al., Nitric Oxide Storage as a Factor of Adaptive Protection, Ross. Fiziol. Zhurn. im. I.M. Sechenova, 2000, no. 4, pp. 447–454.

  • Stamler, J.S., Jaraki, O., Osborne, J., et al., Nitric Oxide Circulates in Mammalian Plasma Primarily as an S-Nitroso Adduct of Serum Albumin, Proc. Natl. Acad. Sci. USA, 1992a, vol. 89, pp. 7674–7677.

    Google Scholar 

  • Stamler, J.S., Simon, D.J., Osborn, J.A., et al., S-Nitrosylation of Proteins with Nitric Oxide; Synthesis and Characterization of Biologically Active Components, Proc. Natl. Acad. Sci. USA, 1992b, vol. 89, pp. 444–448.

    Google Scholar 

  • Stoclet, J.-C., Muller, B., Andriantsitokhaina, R., and Kleshchev, A., Nitric Oxide Overproduction in Pathophysiology of Blood Vessels, Biokhimiya, 1998, no. 7, pp. 976–983.

  • Stoclet, J.-C., Muller, B., Gyorgy, K., et al., The Inducible Nitric Oxide Synthase in Vascular and Cardiac Tissue, Eur. J. Pharmacol., 1999, vol. 375, pp. 139–155.

    Google Scholar 

  • Terluk, M.R., da Silva-Santos, J.E., and Assreuy, J., Involvement of Soluble Guanylate Cyclase and Calcium-Activated Potassium Channels in the Long-lasting Hyporesponsiveness to Phenylephrine Induced by Nitric Oxide in Rat Aorta, Naunyn Schmiedebergs Arch. Pharmacol., 2000, vol. 361, pp.477–483.

    Google Scholar 

  • Troncy, E., Francoeur, M., Salazkin, I., et al., Extra-Pulmonary Effects of Inhaled Nitric Oxide in Swine with and without Phenylephrine, Br. J. Anaesth., 1997, vol. 79, pp. 631–640.

    Google Scholar 

  • Vanin, A.F., Endothelium-Derived Relaxing Factor Is a Nitrosyl Iron Complex with Thiol Ligands, FEBS Lett., 1991, vol. 289, pp. 1–3.

    Google Scholar 

  • Vanin, A.F., Dinitrosyl Iron Complexes and S-Nitrosothiols—Two Possible Forms of Nitric Oxide Stabilization and Transport in Biological Systems, Biokhimiya, 1998, no. 7, pp. 924–238.

  • Vanin, A.F. and Kleschyov, A.L., EPR Detection and Biological Implication of Nitrosyl Non-Heme Iron Complexes, Nitric Oxide in Transplant Rejection and Anti-Tumor Defense, Lukiewicz, S.J. and Zweier, J.L., Eds., Norwell: Kluwer Academic, 1998, pp. 49–82.

    Google Scholar 

  • Vanin, A.F. and Varich, V.J., Nitrosyl Non-Heme Iron Complexes in Animal Tissues, Studia Biophys., 1981, vol. 86, pp.175–185.

    Google Scholar 

  • Vanin, A.F., Kurbanov, I.S., Mordvintcev, P.I., and Aliev, D.I., Influence of the Intracellular Medium on the Structure of Dinitrosyl Complexes of Non-Heme Iron in the Liver of Animals, Studia Biophys., 1987, vol. 120, pp. 145–154.

    Google Scholar 

  • Vanin, A.F., Malenkova, I.V., Mordvintsev, P.I., and Myul'sh, A., Dinitrosyl Iron Complexes with Thiol-containing Ligands and Their Reversible Transformation to S-Nitrosothiols, Biokhimiya, 1993a, vol. 58, pp. 1094–1103.

    Google Scholar 

  • Vanin, A.F., Manukhina, E.B., Lapshin, A.V., and Meerson, F.Z., Increased Synthesis of Nitric Oxide in the Aorta Wall during Experimental Myocardial Infarction, Byull. Eksp. Biol. Med., 1993b, no. 8, pp. 142–144.

  • Vanin, A.F., Lapshin, A.V., Manukhina, E.B., and Meerson, F.Z., Detection of Dinitrosyl Iron Complexes by Reaction with Diethyldithiocarbamate in Blood Vessels, Fiziol. zhurn. im. I.M. Sechenova, 1995, no. 5, pp. 50–57.

  • Vanin, A.F., Malenkova, I.V., and Serezhenkov, V.A., Iron Catalyzes Both Decomposition and Synthesis of S-Nitrosothiols: Optical and Electron Paramagnetic Resonance Studies, Nitric Oxide, 1997, vol. 1, pp. 191–203.

    Google Scholar 

  • Vanin, A.F., Huisman, A., Stroes, E.S.G., et al., Antioxidant Capacity of Mononitrosyl-Iron-Dithiocarbamate Complexes: Implications for NO Trap**, Free Radical Biol. Med., 2001, vol. 30, pp. 813–824.

    Google Scholar 

  • Vedernikov, Y.P., Mordvintcev, P.I., Malenkova, I.V., and Vanin, A.F., Endothelium-Derived Relaxing Factor Is Not Identical to Nitric Oxide, Nitric Oxide From L-Arginine: a Bioregulatory System, Moncada, S. and Higgs, E.A., Eds., Amsterdam: Elsevier, 1990, pp. 373–377.

    Google Scholar 

  • Vedernikov, Y.P., Mordvintcev, P.I., Malenkova, I.V., and Vanin, A.F., Effect of Diethyldithiocarbamate on the Activity of Nitric Oxide-Releasing Vasodilators, Eur. J. Pharmacol., 1992, vol. 212, pp. 125–128.

    Google Scholar 

  • Venturini, C.M., Palmer, R.M., and Moncada, S., Vascular Smooth Muscle Contains a Depletable Store of a Vasodilator Which Is Light-Activated and Restored by Donors of Nitric Oxide, J. Pharmacol. Exp. Ther., 1993, vol. 266, pp. 1497–500.

    Google Scholar 

  • Vithayathil, A.J., Ternberg, J.L., and Commoner, B., Changes in Electron Spin Resonance Signals of Rat Liver during Chemical Carcinogenesis, Nature, 1965, vol. 207, pp.1246–1249.

    Google Scholar 

  • Williams, D.L., S-Nitrosothiols and Role of Metal Ions in Decomposition to Nitric Oxide, Methods Enzymol., 1996, vol. 268, pp. 299–308.

    Google Scholar 

  • Wong, H.R., Finder, J.D., Wasserloos, K., and Pitt, B.R., Expression of Inducible Nitric Oxide Synthase in Cultured Rat Pulmonary Artery Smooth Muscle Cells Is Inhibited by the Heat Shock Response, Am. J. Physiol., 1995, vol. 269, pp. L843–L848.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manukhina, E.B., Smirin, B.V., Malyshev, I.Y. et al. Nitric Oxide Storage in the Cardiovascular System. Biology Bulletin 29, 477–486 (2002). https://doi.org/10.1023/A:1020465810586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020465810586

Keywords

Navigation