Log in

Increased Expression of Fas Ligand on Mycobacterium tuberculosis Infected Macrophages: A Potential Novel Mechanism of Immune Evasion by Mycobacterium tuberculosis?

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We have studied the location and mechanism of apoptosis within the granulomas in the lungs at various stages of slowly progressive primary murine Mycobacterium tuberculosis infection. Parallel sections were analyzed for detection of mycobacterial antigens, Fas, and Fas ligand (FasL) by immunohistochemistry, and for apoptotic cells by terminal deoxynucleotidyl-transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) method. The frequency of apoptosis was high in the macrophage aggregates as compared to the lymphocyte aggregates and at the interface between them. Five to seven percent of the vacuolated macrophages in the granulomas expressed FasL intensely. These cells contained large amounts of mycobacterial antigens. These findings suggest that M. tuberculosis infection can induce increased expression of FasL in a population of infected macrophages. As a consequence the infected macrophages will be protected from the attack of cytotoxic T cells and activation of bactericidal mechanisms by Th1 type lymphocytes. This constitutes a novel evasion mechanism for M. tuberculosis possibly explaining the chronic course of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lurie, M. B. 1964. Resistance to Tuberculosis. Experimental studies in native and acquired defensive mechanisms. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  2. Dannenberg, A. M. Jr., and G. A. W. Rook. 1994. Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses-dual mechanisms that control bacillary multiplication. In: Bloom, B. R. (editor), Tuberculosis; pathogenesis, protection, and control, Washington DC, pp. 459.

  3. Gomez, J., B. Pohajdak, S. O'Neill, J. Wilkins, and A. H. Greenberg. 1985. Activation of rat and human alveolar macrophages intracellular microbicidal activity by a preformed LGL cytokine. J. Immunol. 135:1194.

    Google Scholar 

  4. North, R. J. 1974. Cell mediated Immunity and the response to infection. In: McCluskey, R. T. and S. Cohen (editors), Mechanisms of cell-mediated immunity, John Wiley &; Sons, Inc. pp. 185.

  5. Mackaness, G. B. 1968. The immunology of antituberculous immunity. Am. Rev. Respir. Dis. 97:337.

    Google Scholar 

  6. Orme, I. M., and P. Anderson. 1993. T-Cell response to Mycobacterium Tuberculosis. J. Infect. Dis. 167:1481.

    Google Scholar 

  7. Kale, Ab. B., R. Kiessling, J. D. Van-Embden, J. E. Thole, D. S. Kumararatne, P. Pisa, A. Wondimu, and T. H. Ottenhoff. 1990. Induction of antigen-specific CD4+HLA-DR-restricted cytotoxic T lymphocytes as well as nonspecific nonrestricted killer cells by the recombinant mycobacterial 65-kDa heat-shock protein. Eur. J. Immunol. 20:369.

    Google Scholar 

  8. Tsukaguchi, K., and K. N. Balaji. 1995. CD4+ alpha beta T cell and gamma delta T cell responses to Mycobacterium tuberculosis. Similarities and differences in Ag recognition, cytotoxic effector function, and cytokine production. J. Immunol. 154:1786.

    Google Scholar 

  9. Mohagheghpour, N., D. Gammon, L. M. Kawamura, A. van Vollenhoven, C. J. Benike, and E. G. Engleman. 1998. CTL response to Mycobacterium tuberculosis: identification of an immunogenic epitope in the 19-kDa lipoprotein. J. Immunol. 161:2400.

    Google Scholar 

  10. Kagi, D., F. Vignaux, B. Ledermann, K. Burki, V. Depraetere, S. Nagata, H. Hengartner, and P. Goldstein. 1994. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265:528.

    Google Scholar 

  11. Ucker, D. S., J. D. Wilson, and L. D. Hebshi. 1994. Target cell death triggered by cytotoxic T lymphocytes: a target cell mutant distinguishes passive pore formation and active cell suicide mechanisms. Mol. Cell. Biol. 14:427.

    Google Scholar 

  12. Henkart, P. 1985. A. Mechanisms of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3:31.

    Google Scholar 

  13. Trauth, B. C., C. Klas, A. M. J. Peters, S. Matzku, P. Moller, W. Falk, K. M. Debatin, and P. H. Krammer. 1989. Monoclonal antibody-mediated tumour regression by induction of apoptosis. Science 245:301.

    Google Scholar 

  14. Vignaux, F., E. Vivier, B. Malissen, V. Depraetere, S. Nagata, and P. Goldstein. 1995. TCR/CD3 coupling to Fas-based cytotoxicity. J. Exp. Med. 181:781.

    Google Scholar 

  15. Suda, T., T. Takahashi, P. Goldstein, and S. Nagata. 1993. Molecular cloning and expression of the Fas ligand, a novel member of the tumour necrosis factor family. Cell 75:1169.

    Google Scholar 

  16. Oddo, M., T. Renno, A. Attinger, T. Bakker, H. R. MacDonald, and P. R. Meylan. 1998. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160:5448.

    Google Scholar 

  17. Ottenhoff, T. H., and T. Mutis. 1995. Role of cytotoxic cells in the protective immunity against and immunopathology of intracellular infections. Eur. J. Clin. Invest. 25:371.

    Google Scholar 

  18. Chan, J., and S. H. E. Kaufmann. 1994. Immune mechanisms of protection. In: Bloom, B. R. (editor), Tuberculosis; pathogenesis, protection, and control. Washington, DC, pp. 389.

  19. Durrbaum-Landmann, J. Gercken, H. D. Flad and M. Ernst. 1996. Effect of in vitro infection of human monocytes with low numbers of Mycobacterium tuberculosis bacteria on monocyte apoptosis. Infect. Immun. 64:5384.

    Google Scholar 

  20. Keane, J., M. K. Balcewicz-Sablinska, H. G. Remold, G. L. Chupp, B. B. Meek, M. J. Fenton, and H. Kornfeld. 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect. Immun. 65:298.

    Google Scholar 

  21. Balcewicz-Sablinska, M. K., J. Keane, H. Kornfeld, and H. G. Remold. 1998. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α. J. Immunol. 161:2636.

    Google Scholar 

  22. Rojas, M., L. F. Barrera, G. Puzo, and L. F. Garcia. 1997. Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages. Role of nitric oxide and mycobacterial products. J. Immunol. 159:1352.

    Google Scholar 

  23. Kremmer, L., J. Estaquier, E. Brandt, J-C. Ameisen, and C. Locht. 1997. Mycobacterium bovis Bacillus Calmette Guerin infection prevents apoptosis of resting human monocytes. Eur. J. Immunol. 27:2450.

    Google Scholar 

  24. a.Mustafa, T., S. Phyu, R. Nilsen, R. Jonsson, and G. Bjune. 1999. A mouse model for slowly progressive primary tuberculosis. Scand. J. Immunol. 50:127.

    Google Scholar 

  25. Rhoades, E. R., A. A. Frank, and I. M. Orme. 1997. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuberc. Lung Dis. 78:57.

    Google Scholar 

  26. Phyu, S., T. Mustafa, T. Hofstad, R. Nilsen, R. Fosse, and G. Bjune. 1998. A mouse model for latent tuberculosis. Scand. J. Infect. Dis. 30:59.

    Google Scholar 

  27. Closs, O., M. Harboe, N. H. Axelsen, K. Bunch-Christensen, and M. Magnussen. 1980. The antigens of Mycobacterium bovis, strain BCG, studied by crossed immunoelectrophoresis: A reference system. Scand. J. Immunol. 12:246.

    Google Scholar 

  28. Wiley, E. L., T. J. Mulhollan, B. Beck, J. A. Tyndall, and R. G. Freemann. 1990. Polyclonal antibodies raised against Bacillus Calmette-Guerin, Mycobacterium duvalii and Mycobacterium paratuberculosis used to detect mycobacteria in tissues with the use of immunohistochemical techniques. Am. J. Clin. Path. 94:307.

    Google Scholar 

  29. Gavrieli, Y., Y. Sherman, and S. A. Ben-Sasson. 1992. Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J. Cell Biol. 119:493.

    Google Scholar 

  30. Surh, C. D., and J. Sprent. 1994. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100.

    Google Scholar 

  31. Bursch, W. 1990. The biochemistry of cell death by apoptosis. Biochem. Cell Biol. 68:1071.

    Google Scholar 

  32. Moore, K. J., and G. Matlashewski. 1994. Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J. Immunol. 152:2930.

    Google Scholar 

  33. Thompson, C. B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456.

    Google Scholar 

  34. Mangan, D. F., G. R. Welch, and S. M. Wahl. 1991. Lipopolysaccharide, tumour necrosis factor-α, and IL-1β prevent programmed cell death (apoptosis) in human peripheral blood monocytes. J. Immunol. 146:1541.

    Google Scholar 

  35. Mangan, D. F., and S. M. Wahl. 1991. Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and proinflammatory cytokines. J. Immunol. 147:3408.

    Google Scholar 

  36. Henson, P. M., and D. W. Riches. 1994. Modulation of macrophage maturation by cytokines and lipid mediators: a potential role in resolution of pulmonary inflammation. Ann. N.Y. Acad. Sci. 725:298.

    Google Scholar 

  37. Badley, A. D., J. A. M C Elhinny, P. J. Leibson, D. H. Lynch, M. R. Alderson, and C. V. Paya. 1996. Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes. J. Virol. 70:199.

    Google Scholar 

  38. Bonfoco, E., P. M. Stuart, T. Brunner, T. Lin, T. S. Griffith, Y. Gao, H. Nakajima, P. A. Henkart, T. A. Ferguson, and D. R. Green. 1998. Inducible Nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 9:711.

    Google Scholar 

  39. Strand, S., W. J. Hofmann, H. Hug, M. Muller, G. Otto, D. Strand, S. M. Mariani, W. Stremmel, P. H. Krammer, and P. R. Galle. 1996. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumour cells—A mechanism of immune evasion? Nature Med. 2:1361.

    Google Scholar 

  40. Hahne, M., D. Rimoldi, M. Schroter, P. Romero, M. Schreier, L. E. French, P. Schneider, T. Bornand, A. Fontana, D. Lienard, J. Cerottini, and J. Tschopp. 1996. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363.

    Google Scholar 

  41. Niehans, G. A., T. Brunner, S. P. Frizelle, J. C. Liston, C. T. Salerno, D. J. Knapp, D. R. Green, and R. A. Kratzke. 1997. Human lung carcinomas express Fas ligand. Cancer Res., 57:1007.

    Google Scholar 

  42. Suda, T., T. Takahashi, P. Golstein, and S. Nagata. 1993. Molecular cloning and expression of the Fas ligand, a novel member of the tumour necrosis factor family. Cell 75:1169.

    Google Scholar 

  43. Bellgrau, D., D. Gold, S. Helena, J. Moore, A. Franzusoff, and R. C. Duke. 1995. A role for CD95 ligand in preventing graft rejection. Nature 377:630.

    Google Scholar 

  44. Griffith, T. S., T. Brunner, S. M. Fletcher, D. R. Green, and T. A. Ferguson. 1995. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189.

    Google Scholar 

  45. Saas, P., P. R. Walker, M. Hahne, A. L. Quiquerez, V. Schnuriger, G. Perrin, L. French, E. G. VanMeir, N. de-Tribolet, J. Tschopp, and P. Y. Dietrich. 1997. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J. Clin. Invest. 99:1173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustafa, T., Phyu, S., Nilsen, R. et al. Increased Expression of Fas Ligand on Mycobacterium tuberculosis Infected Macrophages: A Potential Novel Mechanism of Immune Evasion by Mycobacterium tuberculosis?. Inflammation 23, 507–521 (1999). https://doi.org/10.1023/A:1020286305950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020286305950

Keywords

Navigation