Log in

Ultrasonic through-transmission method of evaluating the modulus of elasticity of Al2O3–ZrO2 composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The elastic properties of Al2O3–ZrO2 composite were determined from ultrasonic velocity measurements, and were found to be dependent upon the amount of ZrO2 phase, the compacting pressure of the green ceramic and sintering time. The velocity in the Al2O3–ZrO2 composite increased to a maximum for about 3 wt% unstabilized ZrO2 dispersed in Al2O3. The velocity decreased monotonically thereafter. The increase in moduli, as shown by an increase in velocity, has been attributed to phase transformation of the unstabilized ZrO2 from tetragonal to a monoclinic phase, which presumably leads to a toughening and strengthening effect, and also due to the action of ZrO2 in stop** grain growth of Al2O3 during densification. The excessive shear strain, induced by the tetragonal→monoclinic transformation phase, with greater than 50 wt% ZrO2 content, caused microcracks to appear in the composite. This reduced the elastic moduli of the composite. It was found that the composition dependence of the elastic moduli lie outside the theoretical bound of Voigt and Reuss for the elastic moduli of two-phase materials, and that by increasing the compacting pressure, an improvement in the elastic moduli of the sintered composite occurred irrespective of ZrO2 content. The thermal expansion of the composites showed no appreciable change with addition of zirconia up to 5 wt% ZrO2. However, dimensional changes due to phase transformation particularly with high zirconia content have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. CLAUSSEN, J. Amer. Ceram. Soc. 59 (1976).

  2. Idem, ibid. 61 (1978) 85.

  3. S. HORI and R. KURITA, Adv. Ceram. Sci. Technol. Zirconia III 24A (1988) 423.

    CAS  Google Scholar 

  4. T. S. YEN and J. K. GUO, ibid. 24B (1988) 573.

    CAS  Google Scholar 

  5. F. F. LANGE and M.M. HIRLINGER, J. Amer. Ceram. Soc. 67 (1984) 164.

    Article  CAS  Google Scholar 

  6. S. HORI, R. KURITA, M. YOSHIMURA and S. SOMIYA, J. Mater. Sci. Lett. 4 (1985) 1067.

    Article  CAS  Google Scholar 

  7. P. Y. DALVI and D. D. UPADHYAYA, Trans. Ind. Ceram. Soc. 49(2) (1990) 21.

    Article  Google Scholar 

  8. J. WANG and R. STEVENS, J. Mater. Sci. 24 (1989) 3421.

    Article  CAS  Google Scholar 

  9. A. G. EVANS and A. H. HEUER, J. Amer. Ceram. Soc. 63(5) (1980) 241.

    Article  CAS  Google Scholar 

  10. F. VODAK, Acta Mechan. 39 (1981) 37.

    Article  Google Scholar 

  11. K. S. TAN, R. ROUND and B. BRIDGE, Br. Ceram. Trans. J. 88(4) (1989) 138.

    CAS  Google Scholar 

  12. R. HALMSHAW, “Non-destructive testing” (Edward Arnold, 1987) pp. 112–13.

  13. J. BLITZ, “Elements of acoustics” (Butterworths, 1976).

  14. P. W. BRIDGEMAN, “Studies in large plastic flow” (McGraw-Hill, New York, 1952).

    Google Scholar 

  15. E. RYSHKEWITCH and D. W. RICHERSON, “Oxide Ceramics” (General Ceramics, New York, 1985) pp. 143–53.

    Google Scholar 

  16. W. D. KINGERY, H. K. BOWEN and R. H. UHLMANN, “Introduction to ceramics”, 2nd Edn (Wiley, 1975) pp. 773–7.

  17. Z. HASHIN and S. SHTRIKMAN, J. Mech. Phys. Solids 11 (1963) 127.

    Article  Google Scholar 

  18. B. L. MITRA, N. C. BISWAS and P. S. AGGARWAL, Bull. Mater. Sci. 15(2) (1992) 131.

    Article  CAS  Google Scholar 

  19. G. DE PORTU and P. VINCENZINI, Short Commun. 5 (1979) 165.

    CAS  Google Scholar 

  20. Idem, Ceram. Int. 6 (1980) 129.

    Article  CAS  Google Scholar 

  21. G. DE PORTU, C. FIORI and O. SBAIRERO, Adv. Ceram. 24B (1988) 1063.

    CAS  Google Scholar 

  22. D. J. ROTH, D. B. STANG, S. M. SWICKARD, M. R. DEGUIRE and L. E. DOLHERT, Mater. Eval. July (1991) 883.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, T.K., Hing, P. Ultrasonic through-transmission method of evaluating the modulus of elasticity of Al2O3–ZrO2 composite. Journal of Materials Science 32, 6633–6638 (1997). https://doi.org/10.1023/A:1018648319192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018648319192

Keywords

Navigation