Log in

Fracture variability and R-curve behavior in yttria-stabilized zirconia ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An assessment of fracture origins is conducted in yttria-stabilized zirconia ceramics containing different grain sizes. As the microstructure coarsens due to the application of heat treatments, fracture origins change from single pores to transformed regions at the free surface which are induced by the applied stress. The observation of an increasing size of failure origins with microstructural coarsening lies as the underlying reason for the finding that specimens containing coarser microstructures and a more pronounced R-curve behavior do not fail at larger stresses. A fracture model is used to link the strength variability of a fully tetragonal zirconia containing a small grain size to its pore size distribution. The increased transformability of zirconia ceramics with coarser tetragonal grains is evaluated by means of quantitative phase analysis, characterizations of fracture surface morphology, and R-curve assessments. It is confirmed that tetragonal grains of up to 4 μm may not necessarily undergo a spontaneous t–m transformation upon cooling from sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lawn, “Fracture of Brittle Solids,” 2nd ed. (Cambridge University Press, 1993).

  2. R. W. Rice, J. Mater. Sci. 32 (1997) 1673.

    Google Scholar 

  3. D. B. Marshall, J. Amer. Ceram. Soc. 69 (1986) 173.

    Google Scholar 

  4. M. V. Swain and L. R. F. Rose, ibid. 69 (1986) 511.

    Google Scholar 

  5. L. Ruiz and M. J. Readey, ibid. 79 (1996) 2331.

    Google Scholar 

  6. F. L. Cumbrera, F. SÁnchez-Bajo, R. FernÁndez and L. Llanes, J. Eur. Ceram. Soc. 18 (1998) 2247.

    Google Scholar 

  7. D. R. Clarke and F. Adar, J. Amer. Ceram. Soc. 65 (1982) 284.

    Google Scholar 

  8. M. S. Kaliszewski, G. Behrens, A. H. Heuer, M. C. Shaw, D. B. Marshall, G. W. Dransmann, R. W. Steinbrech, A. Pajares, F. Guiberteau, F. L. Cumbrera and A. Domin-Guez, ibid. 77 (1994) 1185.

    Google Scholar 

  9. R. F. Cook, L. M. Braun and W. R. Cannon, J. Mater. Sci. 29 (1994) 2133.

    Google Scholar 

  10. J. AlcalÁ and M. Anglada, Mater. Sci. Eng. A245 (1998) 267.

    Google Scholar 

  11. G. Quinn, J. KÜbler and R. Getting, VAMAS Report # 17, NIST, Gaithersburg MD, USA (1993).

  12. R. F. Cook and B. R. Lawn, J. Amer. Ceram. Soc. 66 (1983) C–200.

    Google Scholar 

  13. J. C. Newman and I. S. Raju, Engng. Fract. Mech. 15 (1981) 185.

    Google Scholar 

  14. A. G. Evans, “Advances in Ceramics: Science and Technology of Zirconia II,” edited by N. Claussen, M. Rühle and A. H. Heuer (Am. Ceram. Soc., Ohio, USA, 1980) p. 193.

    Google Scholar 

  15. R. K. Govila, J. Mater. Sci. 30 (1995) 2656.

    Google Scholar 

  16. J. AlcalÁ and M. Anglada, Mater. Sci. Eng. A232 (1997) 103.

    Google Scholar 

  17. A. Zimmermann, M. Hoffman, B. D. Flinn, R. K. Bordia, T.-J. Chuang, E. R. Fuller and J. RÖdel, J. Amer. Ceram. Soc. 81 (1998) 2449.

    Google Scholar 

  18. R. W. Rice, J. Mater. Sci. 19 (1984) 895.

    Google Scholar 

  19. F. I. Baratta, J. Amer. Ceram. Soc. 64 (1981) C–3.

    Google Scholar 

  20. T. Fett, Int. J. Fract. 67 (1994) R–41.

    Google Scholar 

  21. R. Danzer and T. Lube, in “Fracture Mechanics of Ceramics 11,” edited by Bradt et al. (Plenum Press, NY, USA, 1996) p. 425.

    Google Scholar 

  22. P. Stanley, H. Fessler and A. D. Sivill, Proc. Brit. Ceram. Soc. 22 (1973) 453.

    Google Scholar 

  23. Idem., Proc. Inst. Mech. Engrs. 190 (1976) 589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casellas, D., Alcalá, J., Llanes, L. et al. Fracture variability and R-curve behavior in yttria-stabilized zirconia ceramics. Journal of Materials Science 36, 3011–3025 (2001). https://doi.org/10.1023/A:1017923008382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017923008382

Keywords

Navigation