Log in

Relativistic Quantum Mechanics as a Telegraph

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A derivation by Fröhner of non-relativistic quantum mechanics via Fourier analysis applied to probability theory is not extendable to relativistic quantum mechanics because Schrödinger's positive definite probability density ψ*ψ is lost (Dirac's spin 1/2 case being the exception). The nature of the Fourier link then changes; it points to a redefinition of the probability scheme as an information carrying telegraph, the code of which is Born's as extended by Dirac and by Feynman. Hermitian symmetry of the transition amplitude 〈ϕ∣ψ〉 between Dirac representations expresses reciprocity of preparation and measurement (the quantal coding and decoding), two equally active interventions of the physicist; as “the measurement perturbs the system” retrodiction implies retroaction evidenced in “delayed choice.” Reciprocity of knowledge and organization vindicates Wigner's claim that “reciprocal to the action of matter upon mind there exists a direct action of mind upon matter”: psychokinesis, branded by Jaynes as “a psychiatric disorder of the Copenhagen school.” As for factlike irreversibility, it is expressed by the enormity of the change rate from information to negentropy: while gain in knowledge is normal psychokinesis is paranormal. Stapp's recent discussion of psychokinesis in a quantum context should be resumed in association with an EPR correlation; an experimental test is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. H. Fröhner, Z. Naturforsch. 53a, 637 (1998).

    Google Scholar 

  2. L. Fejer, J. Reine und Ang. Math. 146, 53 (1915).

    Google Scholar 

  3. M. Born, W. Heisenberg, and P. Jordan, Z. Phys. 35, 557 (1926).

    Google Scholar 

  4. P. A. M. Dirac, The Principles of Quantum Mechanics, 3rd edn. (Clarendon Press, Oxford, 1947).

    Google Scholar 

  5. H. Mehlberg, “Physical laws and the time arrow,” in Current Issues in the Phylosophy of Science, H. Feigl and G. Maxwell, eds. (Holt, Rinehart, Wilson, New York, 1961), p. 195.

    Google Scholar 

  6. D. J. Hoekzema, Found. Phys. 22, 467, 487 (1992).

    Google Scholar 

  7. B. d'Espagnat, Veiled Reality (Addison-Wesley, New York, 1995).

    Google Scholar 

  8. O. Costa de Beauregard, “Intersubjectivity, relativistic covariance and conditionals,” in Maximum Entropy and Bayesian Methods, A. Mohammad Djafari and G. Demoment, eds. (Kluwer Academic, Dordrecht, 1993), p. 9.

    Google Scholar 

  9. E. T. Jaynes, “Clearing up mysteries,” in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Kluwer Academic, Dordrecht, 1989), p. 1.

    Google Scholar 

  10. O. Costa de Beauregard, C. R. Acad. Sci. 236, 1632 (1953).

    Google Scholar 

  11. J. A. Wheeler, “The past and the delayed choice double-slit experiment,” in Mathematical Foundations of Quantum Mechanics, R. Marlow, ed. (Academic, New York, 1978), p.9.

    Google Scholar 

  12. W. A. Miller and J. A. Wheeler, “Delayed choice experiments and Bohr's elementary phenomenon,” in Foundations of Quantum Mechanics in the Light of New Technology, S. Kamefuchi et al., eds. (Phys. Soc. Japan, Tokyo, 1983), p. 140.

    Google Scholar 

  13. E. P. Wigner, Symmetries and Reflections (M.I.T. Press, Cambridge, Mass., 1967), p. 184.

    Google Scholar 

  14. R. Jahn and B. Dunne, “On the role of consciousness in quantum physical processes,” in The Concept of Probability, E. I. Bitsakis and C. A. Nicolaides, eds. (Kluwer Academic, Dordrecht, 1989), p. 167. “The role of consciousness in physical reality,” in Bell's Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic, Dordrecht, 1989), p. 285.

    Google Scholar 

  15. H. P. Stapp, Phys Rev. A 50, 18 (1994).

    Google Scholar 

  16. J. Eccles, Proc. Roy. Soc. 22B, 411 (1986).

    Google Scholar 

  17. F. London and E. Bauer, La Théorie de l'Observation en Mécanique Quantique (Hermann, Paris, 1939).

    Google Scholar 

  18. J. G. Cramer, Rev. Mod. Phys. 58, 847 (1983).

    Google Scholar 

  19. H. P. Stapp, Nuovo Cim. 29B, 270 (1975).

    Google Scholar 

  20. W. C. Davidon, Nuovo Cim. 36B, 34 (1976).

    Google Scholar 

  21. K. V. Roberts, Proc. Roy. Soc. A 360, 135 (1977).

    Google Scholar 

  22. R. I. Sutherland, Nuovo Cim. 88B, 114 (1985).

    Google Scholar 

  23. M. Riesz, Actes du Dixième Congrès des Mathématiciens Scandinaves (Copenhague, 1946), p. 123.

  24. O. Costa de Beauregard, J. Phys. Rad. 15, 810 (1954); 16, 770 (1955); 17, 872 (1956); 18, 223 (1957).

    Google Scholar 

  25. O. Costa de Beauregard, “Lorentz and CPT invariances and the EPR correlations,” Ref. 12, p. 233.

  26. H. Umezawa and A. Visconti, Nucl. Phys. 1, 20 (1956).

    Google Scholar 

  27. A. Einstein, in Electrons et Photons, Rapports et Discussions du Cinquième Conseil Solvay (Gauthier-Villars, Paris, 1927), p. 253.

    Google Scholar 

  28. J. D. van der Waals, Phys. Z. 12, 547 (1911).

    Google Scholar 

  29. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Google Scholar 

  30. D. Bohm, Quantum Theory (Prentice Hall, Englewood Cliffs, New Jersey, 1951), pp. 614–622.

    Google Scholar 

  31. O. Costa de Beauregard, Phys. Rev. Lett. 50, 867 (1983).

    Google Scholar 

  32. A. Einstein, in Einstein Philosopher Scientist, P. A. Schilpp, ed. (Open Court, La Salle, Illinois, 1949), p. 683.

    Google Scholar 

  33. A. Shimony, “Controllable and uncontrollable nonlocality,” Ref. 12, p. 225.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Beauregard, O.C. Relativistic Quantum Mechanics as a Telegraph. Foundations of Physics 31, 837–848 (2001). https://doi.org/10.1023/A:1017552529843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017552529843

Keywords

Navigation