Log in

Stochastic mitochondrial DNA changes: bioenergy decline in type I skeletal muscle fibres correlates with a decline in the amount of amplifiable full-length mtDNA

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Extra-long PCR (XL-PCR) was used to assess the relative concentration of functional full-length mitochondrial DNA (mtDNA) in single type I human vastus lateralis muscle fibres of defined cytochrome c oxidase (COX)activity. Type I muscle fibres rely more on mitochondrial oxidative phosphorylation for their energy demands, compared to the other common fibre types (IIa, IIab and IIb) that principally depend on glycolysis for their energy requirements. A total of 60 single type I fibres were analyzed from 15 individuals (8males and 7 females) of various ages. COX positive muscle fibres were shown to contain amplifiable full-length mtDNA together with a small number of mtDNA rearrangements. By contrast, COX negative fibres did not contain detectable full-length mtDNA, but did contain aheterogeneous mixture of rearranged mtDNA species with the frequency and occurrence of each deletion varying considerably from fibre to fibre. These data lead us to the conclusion that the level of COX activity in type I muscle fibres is reflected by the amount of amplifiable full-length mtDNA. It is proposed that the amount of amplifiable full-length mtDNA constitutes the functional fraction of the total mtDNA. A comprehensive hypothesis that relates the dynamics of mtDNA turnover, mtDNA mutations, mtDNA damage and repair to the ageing process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoyagi Y and Shephard RJ (1992) Aging and muscle function. Sports Med 14: 376-396

    PubMed  CAS  Google Scholar 

  • Birky CW Jr (1983) Relaxed cellular controls and organelle heredity. Science 222: 468-475

    PubMed  Google Scholar 

  • Bohr VA and Anson RM (1999) Mitochondrial DNA repair pathways. J Bioenerg Biomembr 31: 391-398

    Article  PubMed  CAS  Google Scholar 

  • Borges O and Essén-Gustavsson B (1989) Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development. Acta Physiol Scand 136: 29-36

    PubMed  CAS  Google Scholar 

  • Brooks SV and Faulkner JA (1994) Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 26: 432-439

    PubMed  CAS  Google Scholar 

  • de Lacalle S, Iraizoz I and Gonzalo LM (1991) Differential changes in cell size and number in topographic subdivisions of human basal nucleus in normal aging. Neuroscience 433: 445-456

    Article  Google Scholar 

  • Essén B, Jansson E, Henriksson J, Taylor A and Saltin W (1975) Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand 95: 153-165

    Article  PubMed  Google Scholar 

  • Fischer W, Chen KS, Gage FH and Bjorklund A (1991) Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiol Aging 13: 9-23

    Article  Google Scholar 

  • Frischknecht R (1998) Effect of training on muscle strength and motor function in the elderly. Reprod Nutr Dev 38: 167-174

    PubMed  CAS  Google Scholar 

  • Gadaleta MN, Petruzzella V, Daddabbo L, Olivieri C, Fracasso F, Loguercio Polosa P and Cantatore P (1994) Mitochondrial DNA transcription and translation in aged rat. Effect of acetyl-L-carnitine. Ann N Y Acad Sci USA 717: 150-160

    CAS  Google Scholar 

  • Gross NJ, Getz GS and Rabinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 244: 1552-1562

    PubMed  CAS  Google Scholar 

  • Kai Y, Miyako K, Muta T, Umeda S, Irie T, Hamasaki N, Takeshige K and Kang D (1999) Mitochondrial DNA replication in human T lymphocytes is regulated primarily at the H-strand termination site. Biochim Biophys Acta 1446: 126-134

    PubMed  CAS  Google Scholar 

  • Kopsidas G, Kovalenko SA, Kelso JM and Linnane AW (1998) An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutat Res 421: 27-36

    PubMed  CAS  Google Scholar 

  • Kopsidas G, Kovalenko SA, Islam MM, Gingold EB and Linnane AW (2000a) Preferential amplification is minimised in long-PCR systems. Mutat Res 456: 83-88

    PubMed  CAS  Google Scholar 

  • Kopsidas G, Kovalenko SA, Heffernan DR, Yarovaya N, Kramarova L, Stojanovski D, Borg J, Islam MM, Caragounis A and Linnane AW (2000b) Tissue mitochondrial DNA changes. A stochastic system. Ann NY Acad Sci 908: 226-243

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko SA, Harms PJ, Tanaka M, Baumer A, Kelso J, Ozawa T and Linnane AW (1997a) Method for in situ investigation of mitochondrial DNA deletions. Hum Mutat 10: 489-495

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko SA, Kopsidas G, Kelso JM and Linnane AW (1997b) Deltoid human muscle mtDNA is extensively rearranged in old age subjects. Biochem Biophys Res Commun 232: 147-152

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko SA, Kopsidas G, Kelso JM, Rosenfeldt FL and Linnane AW (1998a) Tissue-specific distribution of multiple mitochondrial DNA rearrangements during human aging. Annal NY Acad Sci 854: 171-182

    Article  CAS  Google Scholar 

  • Kovalenko SA, Kopsidas G, Islam M, Heffernan DR, Fitzpatric JA, Caragounis A, Gingold, EB and Linnane AW (1998b) The age-associated decrease in the amount of amplifiable full-length mitochondrial DNA in human skeletal muscle. Biochem Mol Biol Internat 46: 1233-1241

    CAS  Google Scholar 

  • Linnane AW, Zhang C, Baumer A and Nagley P (1992) Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention. Mutat Res 275: 195-208

    PubMed  CAS  Google Scholar 

  • Linnane AW, Kopsidas G, Kelso JM and Kovalenko SA (1997) Occurence of age-associated multiple mtDNA rearrangments in human skeletal muscle. Fed American Soc Exp Biol J 11: A1450

    Google Scholar 

  • Olivetti G, Melissari M, Capasso JM and Anversa P (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68: 1560-1568

    PubMed  CAS  Google Scholar 

  • Ozawa T (1994) Mitochondrial cardiomyopathy. Herz 19: 105-118

    PubMed  CAS  Google Scholar 

  • Roberti M, Musicco C, Polosa PL, Milella F, Gadaleta MN and Cantatore P (1998) Multiple protein-binding sites in the TASregion of human and rat mitochondrial DNA. Biochem Biophys Res Commun 243: 36-40

    Article  PubMed  CAS  Google Scholar 

  • Shadel GS and Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66: 409-435

    Article  PubMed  CAS  Google Scholar 

  • Stroessner-Johnson HM, Rapp PR and Amaral DG (1992) Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey. J Neurosci 12: 1936-1944

    PubMed  CAS  Google Scholar 

  • Wallace DC (1994) Mitochondrial DNA mutations in diseases of energy metabolism. J Bioenerg Biomembr 26: 241-250

    Article  PubMed  CAS  Google Scholar 

  • Wei YH, Lu CY, Lee HC, Pang CY and Ma YS (1998) Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann NY Acad Sci 854: 155-170

    Article  PubMed  CAS  Google Scholar 

  • Yakes FM and Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94: 514-519

    Article  PubMed  CAS  Google Scholar 

  • Yarovaya NO, Kramarova L, Borg J, Kovalenko SA, Caragounis A and Linnane A (2002) Age-related atrophy of rat soleus muscle is accompanied by changes in fibre type composition, bioenergy decline and mtDNA rearrangements. Biogerontology 3: 25-27 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Linnane AW and Nagley P (1993) Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun 195: 1104-1110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Linnane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopsidas, G., Zhang, C., Yarovaya, N. et al. Stochastic mitochondrial DNA changes: bioenergy decline in type I skeletal muscle fibres correlates with a decline in the amount of amplifiable full-length mtDNA. Biogerontology 3, 29–36 (2002). https://doi.org/10.1023/A:1015290810222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015290810222

Navigation