Log in

Chromosome painting as a tool for rice genetics and breeding

  • Published:
Methods in Cell Science

Abstract

Chromosome painting and genomic in situ hybridization (GISH) are both effective methods for basic genetic research and practical breeding. These methods were applied even in the typically small chromosomes of rice. This manuscript describes in detail, highly reproducible, complete protocols for chromosome painting and GISH in rice chromosomes. Examples of useful applications of these methods are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aswidinnoor H, Nelson RJ, Dallas JF, Mcintyre CL, Leung H, Gustafson JP (1991). Cloning and characterization of repetitive DNA sequences of Oryza minuta and Oryza australiensiis. Genome 34: 790–798.

    Google Scholar 

  2. Fukui K (1986). Standardization karyoty** plant chromosomes by a newly developed chromosome image analyzing system (CHIAS). Theor Appl Genet 72: 27–32.

    Google Scholar 

  3. Fukui K (1996). Plant chromosomes at mitosis. In: Fukui K, Nakayama S (eds), Plant Chromosomes: Laboratory Methods, pp 1–17. Boca Raton: CRC Press.

    Google Scholar 

  4. Fukui K (1996). Recent advances in rice chromosome research, In: Khush GS (ed), Rice Genetics III, Proceedings of the 3rd International Rice Genetics Symposium, pp 117–130. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  5. Fukui K, Iijima K (1991). Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81: 589–596.

    Google Scholar 

  6. Fukui K, Iijima K (1992). Manual on rice chromosomes. (2nd ed) Misc Pub Natl Inst Agrobiol Resour 4: 1–25.

    Google Scholar 

  7. Fukui K, Ohmido N (2000). Rice genome research: An alternative approach based on molecular cytology In: Gustafson JP (ed), Genomes, pp 109–121. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  8. Fukui K, Ohmido N, Khush GS (1994). Variability in rDNA loci in genus Oryza detected through fluorescence in situ hybridisation. Theor Appl Genet 87: 893–899.

    Google Scholar 

  9. Fukui K, Shishido R, Kinoshita T (1997). Identification of the rice D-genome chromosomes by genomic in situ hybridization. Theor Appl Genet 95: 1239–1245.

    Google Scholar 

  10. Fukui K, Kakeda K, Hashimoto J, Matsuoka S (1987). In situ hybridization of 125I-labeled rRNA to rice chromosomes. Rice Genet Newsl 4: 114–116.

    Google Scholar 

  11. Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M (1998). Quantitative karyoty** of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes. Theor Appl Genet 96: 325–330.

    Google Scholar 

  12. Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999). Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol Biol 39: 1165-1173.

    Google Scholar 

  13. Iijima K, Kakeda K, Fukui K (1991). Identification and characterization of somatic rice chromosomes by imaging methods. Theor Appl Genet 81: 597–605.

    Google Scholar 

  14. Ito M, Ohmido N, Akiyama Y, Fukui K (2000). Quantitative chromosome map of Arabidopsis thaliana L. by imaging methods. Cytologia 65: 325–331.

    Google Scholar 

  15. Kamisugi Y, Nakayama S, O'Neill CM, Mathias RJ, Tric M, Fukui K (1998). Visualization of the Brassica self-incompatibility S-locus on identified oilseed rape chromosomes. Plant Mol Biol 38: 1081–1087.

    Google Scholar 

  16. Kato S, Fukui K (1998). Condensation pattern (CP) analysis of plant chromosomes by an improved chromosome image analyzing system, CHIAS III. Chromosome Res 6: 473–479.

    Google Scholar 

  17. Kitamura S, Inoue M, Ohmido N, Fukui K (2000). Quantitative chromosome maps and rDNA localization in T subgenome of Nicotiana tabacum L. and its putative progenitors. Theor Appl Genet 101: 1180–1188.

    Google Scholar 

  18. Künzel G, Korzun L, Meister A (2000). Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397–412.

    Google Scholar 

  19. Kuwada Y (1910). A cytological study of Oryza sativa L. Bot Mag 24: 267–280.

    Google Scholar 

  20. Morinaga T (1937). On the microsporogenesis of the various interspecific hybrids of Oryza. A preliminary note. Jpn J Genet 13: 245.

    Google Scholar 

  21. Morinaga T (1939). Cyto-genetics on rice (Oryza sativa L.). Bot Zool 7: 179–183.

    Google Scholar 

  22. Mukai Y (1996). In situ hybridization. In: Fukui K, Nakayama S (eds), Plant Chromosomes: Laboratory Methods, pp 155–170. Boca Raton: CRC Press.

    Google Scholar 

  23. Noma K, Nakajima R, Ohtsubo H, Ohtsubo E (1997). RIRE1, a retrotransposon from wild rice Oryza australiensis. Genes Genet Syst 72: 131–140.

    Google Scholar 

  24. Ohmido N, Akiyama Y, Fukui K (1998). Physical map** of unique nucleotide sequences on identified rice chromosomes. Plant Mol Biol 38: 1043–1052.

    Google Scholar 

  25. Pickering RA, Malyshev S, Künzel G, Johnston PA, Korzun V, Menke M, Schubert I (2000). Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor Appl Genet 100: 27–31.

    Google Scholar 

  26. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989). In situ localization of parental genomes in wide hybrid. Ann Bot 64: 315–324.

    Google Scholar 

  27. Shishido R, Apisitwanich S, Ohmido N, Okinaka Y, Mori K, Fukui K (1998). Detection of specific chromosome reduction in rice somatic hybrids with A, B and C genomes by multi-color genomic in situ hybridization. Theor Appl Genet 97: 1013–1018.

    Google Scholar 

  28. Suoniemi A, Anamthawat-Jonsson K, Arna T, Schulman H (1996). Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum Vulgare L.) genome. Plant Mol Biol 30: 1321–1329.

    Google Scholar 

  29. Uozu S, Ohmido N, Ohtsubo H, Ohtsybo E, Fukui K (1997). Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol 35: 791–799.

    Google Scholar 

  30. Yanagisawa T, Tano S, Fukui K, Harada H (1991). Marker chromosomes commonly observed in the genus Glycine. Theor Appl Genet 81: 606–612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishido, R., Ohmido, N. & Fukui, K. Chromosome painting as a tool for rice genetics and breeding. Methods Cell Sci 23, 125–133 (2001). https://doi.org/10.1023/A:1013130707341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013130707341

Navigation