Log in

The Regulation of Surface Charged Residues on the Properties of Cytochrome b5

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

To understand the roles of negatively surface charged residues, the cytochrome b5 (Cyt b5) E48A/D60A mutant was constructed. UV-visible and CD spectra confirmed that the mutation did not cause overall structural changes of the protein. The mutant presents an unexpected high stability toward the thermal and denaturant compared with the wild type Cyt b5, which shows that these surface charged residues can influence the interactions between the heme b group and the polypeptide chain. Functional properties were clarified through the electron transfer reactions between Cyt b5 and Cyt c. The driving force of the electron transfer reactions is conservative. Although the association constant of Cyt b5 E48A/D60A with Cyt c is much lower than that of the wild type Cyt b5, their electron transfer rate constants do not differ significantly. The results show that these surface charged residues play important roles in regulating both the stability and functional properties of Cyt b5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Ren, Y., Wang, WH. et al. The Regulation of Surface Charged Residues on the Properties of Cytochrome b5. J Protein Chem 20, 487–493 (2001). https://doi.org/10.1023/A:1012506513521

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012506513521

Navigation