Log in

Factors controlling the distribution of Marenzelleria cf. viridis, Pygospio elegans and Streblospio shrubsoli (Polychaeta: Spionidae) in the southern Baltic Sea, with special attention for the response to an event of hypoxia

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The large-scale distribution patterns of the estuarine spionid polychaetes Marenzelleria cf. viridis, Pygospio elegans, and Streblospio shrubsoli were studied in the Pomeranian Bay (southern Baltic Sea) at 20 stations in April 1993 and their relationship with hydrographic factors and sediment composition investigated. The densities of M. cf. viridis and S. shrubsoli decreased rapidly with increasing distance offshore. A corresponding decrease in phytoplankton concentration offshore is suggested as the main cause for the observed spatial patterns. P. elegans was more evenly distributed. At 10 selected stations further samples were collected between April 1993 and July 1996 to study the response of abundance and biomass of the three polychaetes to changes in environmental conditions and to investigate interspecific interactions within the macrofauna. Salinity, pelagic food supply, and sediment parameters did not change. At three of these stations redox potential of the sediment and macrofauna composition were affected by an unusual hypoxic/anoxic event in July/August 1994. All three spionid species were able to survive moderate seasonal hypoxic conditions, but died after exposure to severe anoxia. Special attention was focused on the re-establishment of the spionids. The rate with which M. cf. viridis and P. elegans re-colonised defaunated stations varied between a few weeks and two years. These differences in rate of re-establishment were attributed to the distance from undisturbed recruitment areas, and to the severity of the oxygen deficiency. Increasing densities of P. elegans and S. shrubsoli after the hypoxic event coincided with a reduced abundance of the bivalve Mya arenaria, suggesting a negative interspecific interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arntz WE and Rumohr H (1982) An experimental study of macrobenthic colonization and succession, and the importance of seasonal variation in temperate latitudes. J Exp Mar Biol Ecol 64: 17–45

    Google Scholar 

  • Beszczynska-Möller A (1995) The structure of the water mass and transport conditions in the Pomeranian Bay (Southern Baltic) in September 1993. Bulletin of the Sea Fisheries Institute, Gdynia-Poland 3: 5–14

    Google Scholar 

  • Bick A and Arlt G (1993) The influence of Hediste diversicolor (O.F. Müller, 1776) on the macro-and meiozoobenthos of a shallow water area of Mecklenburg Bay (Western Baltic Sea), Rostocker Meeresbiolog Beitr 1: 9–24

    Google Scholar 

  • Bick A and Burckhardt R (1989) Erstnachweis von Marenzelleria viridis (Polychaeta, Spionidae) für den Ostseeraum, mit einem Bestimmungsschlüssel der Spioniden der Ostsee. Mitt Zool Mus Berlin 65: 237–247

    Google Scholar 

  • Bick A and Gosselek F (1985) Arbeitsschlüssel zur Bestimmung der Polychaeten der Ostsee. Mitt Zool Mus Berlin 61: 171–272

    Google Scholar 

  • Bochert, R., 1996. Untersuchungen zur Reproduktionsbiologie von Marenzelleria viridis (Polychaeta, Spionidae) in einem flachen Küstengewässer der südlichen Ostsee. PhD-thesis, University Rostock, Shaker Verlag, Aachen, pp. 1–138

    Google Scholar 

  • Bochert R and Bick A (1995) Reproduction and larval development of Marenzelleria viridis (Polychaeta, Spionidae). Mar Biol 123: 763–773

    Google Scholar 

  • Brey T (1989) Der Einfluß physikalischer und biologischer Faktoren auf Struktur und Dynamik der sublitoralen Macoma-Gemeinschaft der Kieler Bucht. Ber Inst Meereskunde Kiel 186: 1–248

    Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Dauer DM, Maybury CA and Ewing RM (1981) Feeding behaviour and general ecology of several spionid polychaetes from the Chesapeake Bay. J Exp Mar Biol Ecol 54: 21–38

    Google Scholar 

  • Diaz RJ and Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Ann Rev 33: 245–303

    Google Scholar 

  • Essink K and Kleef HL (1993) Distribution and life cycle of the North American spionid polychaete Marenzelleria viridis (Verrill, 1873) in the Ems Estuary. Neth J Aquat Ecol 27: 237–246

    Google Scholar 

  • Fritzsche D and Von Oertzen J-A (1995) Metabolic responses to changing environmental conditions in the brackish water polychaetes Marenzelleria viridis and Hediste diversicolor. Mar Biol 121: 693–699

    Google Scholar 

  • Fauchald K and Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Ann Rev 17: 193–284

    Google Scholar 

  • Fonselius S (1962) Hydrography of the Baltic deep basins, Fishery Board of Sweden, Ser Hydrogr 13: 1–41

    Google Scholar 

  • Gosselck F and Georgi F (1984) Benthic recolonization of the Lübeck Bight (western Baltic) in 1980/81. Limnologica 15: 407–414

    Google Scholar 

  • Hartmann-Schröder G (1996) Polychaeta. In: Dahl F (ed.), Die Tierwelt Deutschlands. 58 Teil. 2nd edition, Gustav Fischer Verlag, Jena, Stuttgart, Lübeck, Ulm

    Google Scholar 

  • Helcom (1988) Guidelines for the Baltic Monitoring Programme for the third stage. Part D. Biological Determinants. Baltic Sea Environ. Proc. 27D

  • Hempel C (1957) Über den Röhrenbau und die Nahrungsaufnahme einiger Spioniden (Polychaeta, Sedentaria) der deutschen Küsten. Helgoländer Wiss Meeresunters 6: 100–135

    Google Scholar 

  • Hines AH, Posey MH and Haddon PJ (1989) Effects of adult suspension-feeding bivalves on recruitment of estuarine infauna. The Veliger 32: 109–119

    Google Scholar 

  • Jørgensen BB and Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24: 189–201

    Google Scholar 

  • Kube J (1992) Das Makrozoobenthos des Windwatts am Bock — Szenario des Jahres 1991. University Rostock (unpubl.), Diplomthesis, pp. 1–152

  • Kube J (1996) The ecology of macrozoobenthos and sea ducks in the Pomeranian Bay. Meereswiss Ber Warnemünde 18: 1–128

    Google Scholar 

  • Kube J, Peters C and Powilleit M (1996) Spatial variations in growth of Macoma balthica and Mya arenaria (Mollusca, Bivalvia) in relation to environmental gradients in the Pomeranian Bay (Southern Baltic Sea). Arch Fish Mar Res 44: 81–93

    Google Scholar 

  • Kube J, Powilleit M and Warzocha J (1996) The importance of hydrodynamic processes and food availability for the structure of macrofauna assemblages in the Pomeranian Bay (Southern Baltic Sea). Arch Hydrobiol 138: 213–228

    Google Scholar 

  • Kube J, Zettler ML, Gosselck F, Ossig S and Powilleit M (1996) Distribution of Marenzelleria viridis (Polychaeta: Spionidae) in the southwestern Baltic Sea in 1993/94—ten years after introduction. Sarsia 81: 131–142

    Google Scholar 

  • Leipe T, Neumann T and Emeis KC (1995) Schwermetallverteilung in holozänen Ostseesedimenten. Geowissenschaften 13: 470–478

    Google Scholar 

  • Levin LA (1981) Dispersion, feeding behaviour and competition in two spionid polychaetes. J Mar Res 39: 99–117

    Google Scholar 

  • Levin LA (1982) Interference interactions among tube-dwelling polychaetes in a dense infaunal assemblage. J Exp Mar Biol Ecol 65: 107–119

    Google Scholar 

  • Llansó RJ (1991) Tolerance of low dissolved oxygen and hydrogen sulfide by the polychaete Streblospio benedicti (Webster). J Exp Mar Biol Ecol 153: 165–178

    Google Scholar 

  • Nausch M (1982) Experimentell-ökologische Untersuchungen an Polychaetenspecies der Darss-Zingster Boddenkette. PhD-thesis, University Rostock, pp. 1–138

  • Nausch M (1984) The distribution of Streblospio shrubsoli, Alkmaria rom**i and Fabricia sabella and their resistance to temperature, oxygen deficiency and hydrogen sulphide. Limnologica 15: 497–501

    Google Scholar 

  • Nausch M (1988) Untersuchungen zur Reproduktion von Alkmaria rom**i (Horst) und Streblospio shrubsoli (Buchanan). Wiss Z Univ Rostock 37(16): 47–50

    Google Scholar 

  • Nehring D, Matthäus W, Lass H-U, Nausch G and Nagel K (1995) The Baltic Sea 1994—consequences of the hot summer and inflow events. Dt Hydrogr Z 47: 131–144

    Google Scholar 

  • Noji CI-M and Noji TT (1991) Tube lawns of spionid polychaetes and their significance for recolonization of disturbed benthic substrates. Meeresforsch 33: 235–246

    Google Scholar 

  • Ochocki S, Mackiewicz T, Nakonieczny J and Zalewski M (1995) Primary production, chlorophyll, and qualitative and quantitative composition of phytoplankton in the Pomeranian Bay. Bull Sea Fish Inst Gdynia-Poland 3: 33–42

    Google Scholar 

  • Persson L-E (1983) Temporal and spatial variation in coastal macrobenthic community structure, Hanö Bay (southern Baltic). J Exp Mar Biol Ecol 68: 277–293

    Google Scholar 

  • Pollehne F, Busch S, Jost G, Meyer-Harms B, Nausch M, Reckermann M, Schaening P, Setzkorn D, Wasmund D and Witek Z (1995) Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (Southern Baltic). Bull Sea Fish Inst Gdynia-Poland 3: 43–60

    Google Scholar 

  • Powilleit M, Kube J, Maslowski J and Warzocha J (1995) Distribution of macrobenthic invertebrates in the Pomeranian Bay (Southern Baltic Sea) in 1993/94, Bull Sea Fish Inst Gdynia-Poland 3: 75–87

    Google Scholar 

  • Renk H (1992) Primary production and the concentration of chlorophyll a. In: Trzosinska A (ed.), Marine pollution (2). An assessment of the effects of pollution in the Polish coastal area of the Baltic Sea. Polish Academy of Science, National Comitee on Oceanic Research, Studia i materialy oceanologiczne 61: 167–180

  • Rumohr H (1980) Der ‘Benthosgarten’ in der Kieler Bucht—Experimente zur Bodentierökologie. Reports SFB 95 55: 1–179

    Google Scholar 

  • Sardá R and Martin D (1993) Populations of Streblospio (Polychaeta: Spionidae) in temperate zones: demography and production, J Mar Biol Ass UK 73: 769–784

    Google Scholar 

  • Schmiedel-Anger V (1990) Sexuelle und asexuelle Fortpflanzung von Pygospio elegans (Polychaeta: Spionidae). PhD-thesis, University of Kiel, pp. 1–87

  • Schneider A (1994) Vorkommen von Schwefelwasserstoff in einem Brackwasserbiotop und sein Effekt auf die Sedimentbewohner dargestellt am Beispiel von Marenzelleria viridis. Erweiterte Zus Jahrestagung Deut Ges Limnol Hamburg 2: 680–684

    Google Scholar 

  • Siegel H, Gerth M and Schmidt T (1996) Water exchange in the Pomeranian Bight investigated by satellite data and shipborne measurements. Continental Shelf Res 16: 1793–1817

    Google Scholar 

  • Vismann B (1991) Sulfide tolerance: physiological mechanisms and ecological implications. Ophelia 34: 1–27

    Google Scholar 

  • Winkler L (1888) The determination of dissolved oxygen in water. Ber Deut Chem Ges 21: 28–43

    Google Scholar 

  • Zettler ML (1996) Successful establishment of the spionid polychaete Marenzelleria viridis (Verill, 1973), in the Darss-Zingst estuary (southern Baltic) and its influence on the indigenous macrozoobenthos. Arch Fish Mar Res 43: 273–284

    Google Scholar 

  • Zettler ML, Bick A and Bochert R (1995) Distribution and population dynamics of Marenzelleria viridis (Polychaeta: Spionidae) in a coastal water of the southern Baltic. Arch Fish Mar Res 42: 209–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kube, J., Powilleit, M. Factors controlling the distribution of Marenzelleria cf. viridis, Pygospio elegans and Streblospio shrubsoli (Polychaeta: Spionidae) in the southern Baltic Sea, with special attention for the response to an event of hypoxia. Aquatic Ecology 31, 187–198 (1997). https://doi.org/10.1023/A:1009955505252

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009955505252

Navigation