Log in

Potentiation of antitumor effect of NKT cell ligand, α-galactosylceramide by combination with IL-12 on lung metastasis of malignant melanoma cells1

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The combined therapeutic effect of natural killer T (NKT) cell ligand α-galactosylceramide (α-GalCer) and IL-12 against highly metastatic B16-BL6-HM melanoma cells was investigated. In comparison with a single administration of α-GalCer or IL-12, the combined treatment of tumor-bearing mice with α-GalCer plus IL-12 caused a super-induction of serum IFN-γ levels, though α-GalCer-induced IL-4 production was rather inhibited. In parallel with the augmented IFN-γ production, the natural killing activity against YAC-1 cells and syngeneic B16- BL6-HM melanoma was greatly augmented by the combined therapy. The major effector cells responsible for natural killing activity induced by α-GalCer plus IL- 12 were enriched in both NK1.1+TCRαβ+ NKT cells and NK1.1+TCRαβ NK cells. The preventing effect of α-GalCer or IL-12 alone against lung metastasis of B16-BL6-HM was also enhanced by the combination therapy. The antitumor activity of α-GalCer was totally abolished in NKT-deficient mice. However, IL- 12-induced antitumor activity was not eliminated in NKT-deficient mice though it was inhibited by anti-asialo GM1 Ab treatment. These findings suggested that α-GalCer synergistically act with IL-12 to activate both NKT cells and NK cells, which may play a critical role in the strong prevention of distant tumor metastasis at early stages of tumor-bearing. These data will provide a novel tool for the prevention of tumor metastasis using NKT-specific ligands α-GalCer and IL-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koseki H, Imai K, Nakayama F et al. Homogenous junctional sequence of the V+14C T-cell antigen receptor α chain expanded in unprimed mice. Proc Natl Acad Sci USA 1990; 87(14): 5248–52.

    Article  PubMed  CAS  Google Scholar 

  2. Fowlkes BJ, Kruisbeek AM, Ton-That H et al. A novel population of T-cell receptor αβ-bearing thymocytes which predominantly express a single Vβ gene family. Nature 1987; 329(6136): 251–4.

    Article  PubMed  CAS  Google Scholar 

  3. Ohteki T, MacDonald HR. Stringent Vβ requirement for the development of NK1.1+ T cell receptor-α/β + cells in mouse liver. J Exp Med 1996; 183(3): 1277–82.

    Article  PubMed  CAS  Google Scholar 

  4. Arase H, Arase N, Ogasawara K et al. An NK1.1+ CD4+8- singlepositive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor Vβ family. Proc Natl Acad Sci USA 1992; 89(14): 6506–10.

    Article  PubMed  CAS  Google Scholar 

  5. Bendelac A, Rivera MN, Park SH et al. Mouse CD1-specific NK1 T cells: Development, specificity, and function. Annu Rev Immunol 1997; 15: 535–62.

    Article  PubMed  CAS  Google Scholar 

  6. Yankelevich B, Knobloch C, Nowicki M et al. A novel cell type responsible for bone marrow graft regection in mice. T cell with NK phenotype cause acute rejection of bone marrow grafts. J Immunol 1989; 142: 3423–30.

    PubMed  CAS  Google Scholar 

  7. Ballas ZK, Rasmussen K. NK1.1C thymocyte. Adult murine CD4- CD4-, CD8- thymocytes contain an NK1.1+, CD3C, CD5hi, CD44hi, TCRVβ8+ subset. J Immunol 1990; 145(4): 1039–45.

    PubMed  CAS  Google Scholar 

  8. Ohteki T, MacDonald HR. Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8- subset of natural killer 1.1+ T cell receptor-α/β + cells in the liver of mice. J Exp Med 1994; 180(2): 699–704.

    Article  PubMed  CAS  Google Scholar 

  9. Sykes M. Unusual T cell population in adult murine bone marrow. Prevalence of CD3+CD4-CD8- and α/β TCR+NK1.1+ cells. J Immunol 1990; 145(10): 3209–15.

    PubMed  CAS  Google Scholar 

  10. Levisky H, Golumbek P, Pardoll D. The fate of CD4-CD8- T cell receptor α/β + thymocytes. J Immunol 1991; 146(4): 1113–7.

    Google Scholar 

  11. Bendelac A, Lantz O, Quimby ME et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 1995; 268(5212): 863–5.

    PubMed  CAS  Google Scholar 

  12. Porcelli S, Yockey CE, Brenner MB et al. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- α/β T cells demonstrales preferential use of several Vβ genes and an invariant TCR α chain. J Exp Med 1993, 178(1): 1–16.

    Article  PubMed  CAS  Google Scholar 

  13. Kawano T, Cui J, Koezuka Y et al. CD1d-restricted and TCRmediated activation of Vα 14 NKT cells by glycosylceramides. Science (Washington DC) 1997; 278(5343): 1626–9.

    Article  CAS  Google Scholar 

  14. Kawano T, Tanaka Y, Shimizu E et al. A novel recognition motif of human NKT antigen receptor for a glycolipid ligand. Int Immunol 1999, 11(6): 881–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kitamura H, Iwakabe K, Yahata T et al. The natural killer T (NKT) cell ligand a-Galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999; 189(7): 1121–8.

    Article  PubMed  CAS  Google Scholar 

  16. Singh N, Hong S, Scerer DC et al. Activation of NKT cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999; 163(5): 2373–7.

    PubMed  CAS  Google Scholar 

  17. Burdin N, Brossay L, Kronenberg M. Immunization with α-galactosylceramide polarizes CD1-reactive NKT cells towards Th2 cytokine synthesis. Eur J Immunol 1999, 29(6): 2014–25.

    Article  PubMed  CAS  Google Scholar 

  18. Nakui M, Iwakabe K, Ohta A et al. Natural killer T cell ligand α-galactosylceramide inhibited lymph node metastasis of highly metastatic melamoma cells. Jpn J Cancer Res 1999; 90(8): 801–4.

    PubMed  CAS  Google Scholar 

  19. Kobayashi E, Motoki K, Uchida T et al. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 1995; 7(10-11): 529–34.

    PubMed  CAS  Google Scholar 

  20. Motoki K, Maeda K., Ueno H et al. Antitumor activities of combined treatment with a novel immunomodulator, (2S,3S,4R)-1-O-(α-D-galactopyranosyl)-2-(N-hexacosanoylamino)-1,3,4-octadecanetriol (KRN7000), and radiotherapy in tumor-bearing mice. Oncol Res 1996; 8(4): 155–62.

    PubMed  CAS  Google Scholar 

  21. Nishimura T., Santa K, Yahata T et al. Involvement of IL-4-producing Vβ8.2+ CD4+ CD62L- CD45RB- T cells in non-MHC genecontrolled predisposition toward skewing into T helper type-2 immunity in BALB/c mice. J Immunol 1997; 158(12): 5698–706.

    PubMed  CAS  Google Scholar 

  22. Sato N, Yahata T, Santa K et al. Functional characterization of NK1.1+ Ly-6C+ cells. Immunol Lett 1996; 54(1): 5–9.

    Article  PubMed  CAS  Google Scholar 

  23. Nishimura T, Burakoff SJ, Herrmann SH. Protein kinase C required for cytotoxic T lymphocyte triggering. J Immunol 1987; 139(9): 2888–91.

    PubMed  CAS  Google Scholar 

  24. Carnaud C, Lee D, Donnars O et al. Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999; 163(9): 4647–50.

    PubMed  CAS  Google Scholar 

  25. Kawano T, Cui J, Koezuka Y et al. Natural killer like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc Natl Acd Sci USA 1998; 95(10): 5690–3.

    Article  CAS  Google Scholar 

  26. Hashimoto W, Takeda K, Anzai R et al. Cytotoxic NK1.1 Ag+ α/β T cells with intermediate TCR induced in the liver of mice by IL-12. J Immunol 1995; 154(9): 4333–40.

    PubMed  CAS  Google Scholar 

  27. Rorsenberg SA. Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 2000; Suppl 1, S2–7.

    Google Scholar 

  28. Vetto JT, Papa MZ, Lotze MT et al. Reduction of toxicity of interleukin-2 and lymphokine-activated killer cells in humans by the administration of corticosteroids. J Clin Oncol 1987; 5(3): 496–503.

    PubMed  CAS  Google Scholar 

  29. Nishimura T, Togashi Y, Goto M et al. Augmentation of the therapeutic efficacy of adoptive tumor immunotherapy by in vivo administration of slowly released recombinant interleukin 2. Cancer Immunol Immunother 1986; 21(1): 12–8.

    Article  PubMed  CAS  Google Scholar 

  30. Takeda K, Hayakawa Y, Atsuta M et al. Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. Int Immunol 2000; 12(6): 909–14.

    Article  PubMed  CAS  Google Scholar 

  31. Nakagawa R, Motoki K, Ueno H et al. Treatment of Hepatic metastasis of Colon26 adenocarcinoma with an α-galactosylceramide, KRN7000. Cancer Res 1998; 58(6): 1202–7.

    PubMed  CAS  Google Scholar 

  32. Kawamura T, Takeda K, Mendiratta SK et al. Critical role of NK1+ T cells in IL-12-induced immune responses in vivo. J Immunol 1998; 160(1): 16–9.

    PubMed  CAS  Google Scholar 

  33. Cui, J., Shin T, Kawano T et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278(5343): 1623–6.

    Article  PubMed  CAS  Google Scholar 

  34. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17(3): 138–146.

    Article  PubMed  CAS  Google Scholar 

  35. Sad S, Marcotte R, Mosmann TR. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 and Th2 cytokines. Immunity 1995; 2(3): 271–9.

    Article  PubMed  CAS  Google Scholar 

  36. Sato M, Iwakabe K, Kimura S et al. Functional skewing of bone marrow-derived dendritic cells by Th1-or Th2-inducing cytokines. Immunol Lett 1999, 67(1): 63–8.

    Article  PubMed  CAS  Google Scholar 

  37. Nishimura T, Kitamura H, Iwakabe K et al. The interface between innate and aquired immunity. Glycolipid antigen presentation by CD1d-expressing dendritic cells to natural killer T cells induces the differenciation of antigen-specific cytotoxic T lymphocytes. Int Immunol 2000; 12(7): 987–94.

    Article  PubMed  CAS  Google Scholar 

  38. Nishimura T, Iwakabe K, Sekimoto M et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 1999; 190(5): 617–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakui, M., Ohta, A., Sekimoto, M. et al. Potentiation of antitumor effect of NKT cell ligand, α-galactosylceramide by combination with IL-12 on lung metastasis of malignant melanoma cells1. Clin Exp Metastasis 18, 147–153 (2000). https://doi.org/10.1023/A:1006715221088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006715221088

Navigation