Log in

Role of ionospheric effects and plasma sheet dynamics in the formation of auroral arcs

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6–15 R E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6–15 R E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is extended to include effects arising from the low energy electrons originating from the plasma sheet boundary layer. These electrons increase the ionospheric conductivity in a localized patch and enhance the field-aligned current through a feedback mechanism. The feedback effects were studied numerically in a dipole geometry using the the NDM. The numerical studies yield the magnitude of the field-aligned current that is large enough to form a discrete auroral arc. Our studies provide theoretical support to the observational work of Newell et al. that the feedback instability plays a major role in the formation of the discrete auroral arcs observed on the nightside magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, G.: 1970, J. Geophys. Res. 75, 4746.

    Google Scholar 

  • Carlson, C. W., Pfaff, R. F., and Watzin, J. G.: 1998, Geophys. Res. Lett. 25, 2013.

    Google Scholar 

  • Frycz, P., Rankin, R., Samson, J. C., and Tikhonchuk, V. T.: 1998, Phys. Plasmas 5, 3565.

    Google Scholar 

  • Greenwald R. A. and Walker, A. D. M.:1980, Geophys. Res. Lett. 7, 745.

    Google Scholar 

  • Hamza, A. M. and Lyatsky, W.: 2000, J. Geophys. Res., in press.

  • Holzer, T. E. and Sato, T.: 1973, J. Geophys. Res. 78, 7330.

    Google Scholar 

  • Hasegawa, A.: 1976, J. Geophys. Res. 81, 5083.

    Google Scholar 

  • Kan, J. R.: 1991, in J. R. Kan, T. A. Potemra, S. Kokubun, and T. Iijima (eds), Magnetospheric Substorms, AGU Monograph, 64, p. 73.

  • Kivelson, M. G. and Southwood, D. J.: 1986, J. Geophys. Res. 91, 4345.

    Google Scholar 

  • Louarn, P., Wahlund, J. E., Chust, T., Feraudy, H. de., Roux, A., Holback, B., Dovner, P. O., Eriksson, A. I., and Holmgren, G.: 1994, Geophys. Res. Lett. 21, 1847.

    Google Scholar 

  • Lotko, W., Streltsov, A. V., and Carlson, C. W.: 1998, Geophys. Res. Lett. 25, 4449.

    Google Scholar 

  • Lui, A. T. Y.: 1991a, in J. R. Kan, T. A., Potemra, S., Kokubun and T. Iijima (eds), AGU Monograph on Magnetospheric Substorms, Vol. 64, p. 43.

  • Lui, A. T. Y., Chang, C.-L., Mankofsky, A., Wong H.-K., and Winske, D.: 1991, 96, 11,389.

  • Lui, A. T. Y.: 1996, J. Geophys. Res. 101, 13,067.

    Google Scholar 

  • Lui, A. T. Y.: 1998, in T. Chang and J. R. Jasperse (eds), Physics of Space Plasmas Vol. 15, 233.

  • Lui, A. T. Y. and Murphree, J. S.: 1998, Geophys. Res. Letts. 25, 1269.

    Google Scholar 

  • Lysak, R. L.: 1990, Space Sci. Rev. 52, 33.

    Google Scholar 

  • Lysak, R. L.:1986, J. Geophys. Res. 91, 7047.

    Google Scholar 

  • Lysak, R. L.:1991, J. Geophys. Res. 96, 1553.

    Google Scholar 

  • Lysak, R. L. and Dum, C. T.: 1983, J. Geophys. Res. 88, 365.

    Google Scholar 

  • Lyons, L. R.: 1980, J. Geophys. Res. 85, 17.

    Google Scholar 

  • Lynch, K. A. and Torbert, R. B.: 1993, ESAWPP-047, Proceedings of the ESA Conference on Spatio-Temporal Analysis for Resolving Plasma Turbulence, European Space Agency, 273.

  • Lin, Y., Lee, L. C., and Yan, M.: 1996, J. Geophys. Res. 101, 479.

    Google Scholar 

  • Mann, I. R.: 1997, J. Geophys. Res. 102, 27,109.

    Google Scholar 

  • McPherron, R. L.: 1979, Rev. Geophys. Space Phys. 17; 657.

    Google Scholar 

  • Newell, P. T., Meng, C.-I., and Wing, S.: 1996a, J. Geophys. Res. 101, 2599.

    Google Scholar 

  • Newell, P. T., Meng, C.-I., and Wing, S.: 1996b, Nature 381, 766.

    Google Scholar 

  • Passot, T. C. and Sulem, P.: 1994, Phys. Rev. E 50, 1427.

    Google Scholar 

  • Prakash, M.: 1989, J. Geophys. Res. 94, 2497.

    Google Scholar 

  • Prakash, M.: 1996, AGU Monograph 93, Cross-Scale Coupling Processes in Space Plasma Transport, 120.

  • Prakash, M.: 1997, Phys. Chem. Earth 22, 773.

    Google Scholar 

  • Prakash, M. and Lysak, R. L.:1992, Geophys. Res. Lett. 19, 2159

    Google Scholar 

  • Prakash, M. and Lysak, R. L.: 1995, Proceedings of the 1993 MIT Workshop on Stochasticity and Turbulence, 5.

  • Prakash, M. and Diamond, P. H.: 1999, Nonlinear Processes Geophys. 6, 161.

    Google Scholar 

  • Prakash, M. and Rankin, R.: 2000, in S. Ohtani, R. Fujii, M. Hesse and R. L. Lysak (eds), AGU Monograph on The Magnetospheric Current Systems, Vol. 118, p. 165.

  • Rankin R., Samson, J. C., and Frycz, P.: 1993, J. Geophys. Res. 98, 21,341.

    Google Scholar 

  • Rankin, R., Frycz, P., Tikhonchuk, V. T., and Samson, J. C.: 1994, J. Geophys. Res. 99, 21,291.

    Google Scholar 

  • Rankin, R., Frycz, P., Tikhonchuk, V. T., and Samson, J. C.: 1995, Geophys. Res. Lett. 22, 1741.

    Google Scholar 

  • Rankin, R., Frycz, P., Samson, J. C., and Tikhonchuk, V. T.: 1997, Phys. Plasma 4, 829.

    Google Scholar 

  • Rankin, R., Samson, J. C., Tikhonchuk, V. T., and Voronkov, I.: 1999a, J. Geophys. Res. 104, 4399.

    Google Scholar 

  • Rankin, R., Samson, J. C., and Tikhonchuk, V. T.: 1999b, Geophys. Res. Lett. 26, 663.

    Google Scholar 

  • Samson, J. C., Rankin, R., Frycz, P., Tikhonchuk, V. T., and Cogger, L. L.: 1991, J. Geophys. Res. 96, 15,683.

    Google Scholar 

  • Samson, J. C., Lyons, L. R., Newell, P. T., Creutzberg, F., and Xu, B.: 1992a, Geophys. Res. Lett. 19, 2167.

    Google Scholar 

  • Samson, J. C., Wallis, D. D., Hughes, T. J., Creutzberg, F., Ruohoniemi, J. M., and Greenwald, R. A.: 1992b, J. Geophys. Res. 97, 8495.

    Google Scholar 

  • Samson, J. C., Cogger, L. L., and Pao, Q.: 1996, J. Geophys. Res. 101, 17,373.

    Google Scholar 

  • Sato, T. and Holzer, T. E.: 1973, J. Geophys. Res. 78, 7314.

    Google Scholar 

  • Southwood, D. J. and Hughes, W. J.: 1983: Space Sci. Rev. 35, 301.

    Google Scholar 

  • Streltsov, A. V. and Lotko, W.: 1999, J. Geophys. Res. 104, 4411.

    Google Scholar 

  • Sigsbee, K. et al.: 1998, Geophys. Res. Lett. 25, 2077.

    Google Scholar 

  • Trondsen, T. S., Cogger, L. L., and Samson, J. C.: 1997, Geophys. Res. Lett. 24, 2945.

    Google Scholar 

  • Tsurutani, B. T., Gould, T., Goldstein, B. E., Gondalez, W. D., and Sugiura, M.: 1990, J. Geophys. Res. 95, 2241.

    Google Scholar 

  • Voronkov, I., Rankin, R., Frycz, P., Tikhonchuk, V.T., and Samson, J. C.: 1997, J. Geophys. Res. 102, 9639.

    Google Scholar 

  • Wahlund, J. E. et al.: 1994, Geophys. Res. Lett. 21, 1831.

    Google Scholar 

  • Walker, A. D. M., Ruohoniemi, J. M., Baker, K. B., and Greenwald, R. A.: 1992, J. Geophys. Res. 97, 12,187.

    Google Scholar 

  • Wei, C. Q., Samson, J. C., Rankin, R., and Frycz, P.: 1994, J. Geophys.Res. 99, 11,265.

    Google Scholar 

  • Yoshikawa, A. and Itonaga, M.: 1999, J. Geophys. Res. 104, 28,437.

    Google Scholar 

  • Yoon, P. H. and Lui, A. T. Y.: 1996. J. Geophys. Res. 101, 4899.

    Google Scholar 

  • Yoon, P. H. and Lui, A. T. Y.: 1998, in S. Kokubun and Y. Kamide (eds), Substorms-4, p. 387.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, M., Rankin, R. Role of ionospheric effects and plasma sheet dynamics in the formation of auroral arcs. Space Science Reviews 95, 513–537 (2001). https://doi.org/10.1023/A:1005277225763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005277225763

Keywords

Navigation