Log in

An inclusion at a bi-material elastic interface

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper examines the problem of the axial displacement of a rigid circular disk-shaped inclusion which is embedded at the interface between two bonded dissimilar isotropic elastic solids. The analysis focusses on the determination of the axial stiffness of the embedded inclusion, which is evaluated by a numerical solution of two coupled Fredholm integral equations of the second-kind derived from the reduced mixed boundary-value problem for the interface. The results for the axial stiffness are also compared with certain 'bounds' which are developed by imposing constraints on the variation of either the traction or the displacements at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Goodier, Concentration of stress around spherical and cylindrical inclusions and flaws. J. Appl. Mech. Trans. ASME 55 (1933) 39–44.

    Google Scholar 

  2. J. M. Dewey, Elastic constants of materials loaded with non-rigid fillers. J. Appl. Phys. 18 (1947) 578–584.

    Google Scholar 

  3. R. H. Edwards, Stress concentration around spherical inclusions and cavities. J. Appl. Mech. Trans. ASME 18 (1951) 19–30.

    Google Scholar 

  4. J. D. Eshelby, Elastic inclusions and inhomogeneities. In: I.N. Sneddon and R. Hill (eds.), Progress in Solid Mechanics, 2. Amsterdam: North Holland (1961) pp. 89–146.

    Google Scholar 

  5. A. I. Lur'e, Elastostatic problem for a triaxial ellipsoid. Mech. Tverdogo Tela. 1 (1967) 80–83.

    Google Scholar 

  6. G. de Josselin de Jong, Application of stress functions to consolidation problems. Proc. 4th Int. Conf. Soil Mech. Fdn. Engng. 3 (1957) 320–323.

    Google Scholar 

  7. R. P. Kanwal and D. L. Sharma, Singularity methods for elastostatics, J. Elasticity 6 (1976) 405–418.

    Google Scholar 

  8. A. P. S. Selvadurai, Load-deflexion characteristics of a deep anchor in an elastic medium. Geotechnique 26 (1976) 405–418.

    Google Scholar 

  9. A. H. Zureick, Transversely isotropic medium with a rigid spheroidal inclusion under an axial pull. J. Appl. Mech. Trans. ASME 55 (1988) 495–497.

    Google Scholar 

  10. J. R. Willis, Variational and related methods for the overall properties of composites. In: C.-S. Yih (ed.), Advances in Applied Mechanics. New York: Academic Press 21 (1981) 1–78.

    Google Scholar 

  11. L. J. Walpole, Elastic behaviour of composite materials: theoretical foundations. In: C.-S.Yih (ed.), Advances in Applied Mechanics. New York: Academic Press 21 (1981) 169–242.

    Google Scholar 

  12. T. Mura, Micromechanics of Defects in Solids. Sijthoff and Noordhoff, The Netherlands (1981) 494 pp.

    Google Scholar 

  13. T. Mura, Inclusion problems. Appl. Mech. Rev.. 41 (1988) 15–20.

    Google Scholar 

  14. W. D. Collins, Some axially symmetric stress distributions in elastic solids containing penny-shaped cracks. I, Cracks in an infinite solid and a thick plate. Proc. R. Soc. London A203 (1962) 359–386.

    Google Scholar 

  15. L. M. Keer, A note on the solution of two asymmetric boundary value problems. Int. J. Solids Struct. 1 (1965) 257–264.

    Google Scholar 

  16. M. K. Kassir and G. C. Sih, Some three-dimensional inclusion problems in elasticity theory. Int. J. Solids Struct 4 (1968) 225–241.

    Google Scholar 

  17. A. P. S. Selvadurai, Analytical methods for embedded flat anchor problems in geomechanics. In: H. J. Siriwardane and M. M. Zaman (eds.), Computer Methods and Advances in Geomechanics. Rotterdam: A. A. Balkema 1 (1994) 305–321.

    Google Scholar 

  18. M. L. Williams, Stresses around a fault or crack in dissimilar media. Bull. Seism. Soc. Amer 49 (1959) 199–204.

    Google Scholar 

  19. A. H. England, On stress singularities in linear elasticity, Int. J. Engng. Sci. 9 (1971) 571–585.

    Google Scholar 

  20. J. R. Willis, The penny-shaped crack on an interface. Q. J. Mech. Appl. Math. 25 (1972) 367–385.

    Google Scholar 

  21. G. C. Sih and E. P. Chen, Cracks in Composite Materials. In: G.C. Sih (ed.), Mechanics of Fracture, Vol. 6. The Hague: Martinus Nijhoff Publ. (1981). 537 pp.

    Google Scholar 

  22. Ia. S. Ufliand, The contact problem of the theory of elasticity for a die, circular in its plane, in the presence of adhesion. Prikl. Mekh. 20 (1956) 578–587.

    Google Scholar 

  23. V. I. Mossakovskii, The fundamental mixed boundary problem of the theory of elasticity for a halfspace with a circular line separating the boundary conditions. Prikl. Math. Mekh 18 (1954) 187–196.

    Google Scholar 

  24. L. M. Keer, Mixed boundary value problems for a penny-shaped cut. J. Elasticity 5 (1975) 89–98.

    Google Scholar 

  25. G. M. L. Gladwell, Contact Problems in the Classical Theory of Elasticity. The Netherlands Sijthoff and Noordhoff (1980) 716 pp.

    Google Scholar 

  26. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity. London: Cambridge University Press (1927) 643 pp.

    Google Scholar 

  27. A. P. S. Selvadurai, Elastostatic bounds for the stiffness of an elliptical disc inclusion embedded at a transversely isotropic bi-material interface. J. Appl. Math. Phys. (ZAMP) 35 (1984) 13–23.

    Google Scholar 

  28. I. N. Sneddon, The Use of Integral Transforms. New York: McGraw Hill (1972) 539 pp.

    Google Scholar 

  29. I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory. Amsterdam: North-Holland (1996) 283 pp.

    Google Scholar 

  30. K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second-Kind. Philadelphia: Soc. Ind. Appl. Math. (1976) 230 pp.

    Google Scholar 

  31. C. T. H. Baker, The Numerical Treatment of Integral Equations. Oxford: Clarendon Press (1977) 1034 pp.

    Google Scholar 

  32. L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations. Canbridge: Cambridge Univ. Press (1985) 376 pp.

    Google Scholar 

  33. A. W. Skempton, The pore pressure coefficients A and B. Geotechnique 4 (1954) 143–147.

    Google Scholar 

  34. J. R. Rice and M. P. Cleary, Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 14 (1976) 227–241.

    Google Scholar 

  35. A. P. S. Selvadurai (ed.), Mechanics of Poroelastic Media, Solid Mechanics and its Applications, 35. Dordrecht: Kluwer Academic Publishers (1996) 389 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvadurai, A.P.S. An inclusion at a bi-material elastic interface. Journal of Engineering Mathematics 37, 155–170 (2000). https://doi.org/10.1023/A:1004782110718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004782110718

Navigation