Log in

Application of microinjection techniques to plant nutrition

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To gain a full understanding of the complex processes that underlie plant nutrition requires the elucidation of the genetic, molecular, biochemical, biophysical, physiological and environmental factors that interact, at the cellular, organ and whole plant levels, to allow this sessile organism to optimize the allocation and utilization of available resources. The application of microinjection methods, in conjunction with molecular tools, established a powerful experimental approach to elucidate the processes underlying plant growth and development. Besides providing insight into the molecular nature of many of the membrane transport systems that function in nutrient acquisition and transport, this approach revealed the presence of a unique plasmodesmal macromolecular trafficking system that operates at the cellular/tissue and whole-plant level. This information processing network it discussed in terms of its role in allowing plants to regulate physiological activities at a supracellular level. Future studies aimed at identifying additional genes associated with this plasmodesmal macromolecular trafficking system will advance our understanding of the function and evolution of this novel plant communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J A, Huprikar S S, Kohian L V, Lucas W J and Gaber R F 1992 Functional expression of a probably Arabidopsis thalianapotassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89, 3736-3740.

    PubMed  Google Scholar 

  • Balachandran S, Hull R J, Vaadia Y, Wolf S and Lucas W J 1995 Tobacco mosaic virus movement protein-induced change in carbon partitioning originates from the mesophyll and is independent of change in plasmodesmal size exclusion limit. Plant Cell Environ. 18, 1301-1310.

    Google Scholar 

  • Balachandran S, Hull R J, Martins R A, Vaadia Y and Lucas W J 1997a Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus. Plant Physiol. 114, 475-481.

    PubMed  Google Scholar 

  • Balachandran S, **ang Y, Schobert C, Thompson G A and Lucas W J 1997b Phloem sap proteins of Cucurbita maximaand Ricinus communishave the capacity to traffic cell to cell through plasmodesmata. Proc. Natl. Acad. Sci. USA (submitted)

  • Behrens H M, Gradmann D and Sievers A 1985 Membrane-potential responses following gravistimulation in roots of Lepidium sativumL. Planta 163, 463-472.

    Google Scholar 

  • Borstlap A C 1981 Invalidity of the multiphasic concept of ion absorption in plants. Plant Cell Environ. 4, 189-195.

    Google Scholar 

  • Bostwick D E, Dannenhoffer J M, Skaggs M I, Lister R M, Larkins B A and Thompson GA 1992 Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4, 1539-1548

    Article  PubMed  Google Scholar 

  • Busb D R 1993 Proton coupled sugar and amino acid transporters in plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 44, 513-542.

    Google Scholar 

  • Chilcott T C, Frost-Shartzer S, Iverson M W, Garvin D F, Kochian L V and Lucas W J 1995 Potassium transport kinetics of KAT1expressed in Xenopousoocytes: A proposed molecular structure and field effect mechanism for membrane transport. C.R. Acad. Sci. Paris 318, 761-771.

    Google Scholar 

  • Cleland R E, Fujiwara T and Lucas W J 1994 Plasmodesmal mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178, 81-85.

    PubMed  Google Scholar 

  • Deom C M, Oliver M J, and Beachy R N 1987 The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 384-389.

    Google Scholar 

  • Deom C M, Schubert K, Wolf S, Holt C, Lucas W J and Beachy R N 1990 Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc. Natl. Acad. Sci. USA 87, 3284-3288.

    PubMed  Google Scholar 

  • Ding B, Haudenshield J S, Hull R J, Wolf S, Beachy R N and Lucas WJ 1992 Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4, 915-928.

    PubMed  Google Scholar 

  • Ding B, Haudenshield J S, Willmitzer L and Lucas W J 1993 Development of secondary plasmodesmata is arrested in tobacco expressing a yeast derived invertase gene. Plant J. 4, 179-189.

    PubMed  Google Scholar 

  • Ding B, Qiubo L, Nguyen L, Palukaitis P and Lucas W J 1995 Cucumber mosaic virus 3a protein potentiates cell to-cell trafficking of CMV RNA in tobacco plants. Virology 207, 345-353.

    PubMed  Google Scholar 

  • Erwee M G and Goodwin P B 1983 Characterisation of the Egeria densaPlanch, leaf symplast: inhibition of the intercellular movement of fluorescent probes by group II ions. Planta 158, 320-328.

    Google Scholar 

  • Erwee M G and Goodwin P B 1984 Characterization of the Egeria densaleaf symplast: response to plasmolysis, deplasmolysis and to aromatic amino acids. Protoplasma 122, 162-168.

    Google Scholar 

  • Erwee M G and Goodwin P B 1985 Symplast domains in extrastellar tissues of Egeria densaPlanch. Planta 163, 9-19.

    Google Scholar 

  • Erwee M G, Goodwin P B and Van Bel A J E 1985 Cell-cell communication in the leaves of Commelina cyaneaand other plants. Plant Cell Environ. 8, 173-178.

    Google Scholar 

  • Fisher D B, Wu Y and Ku M S B 1992 Turnover of soluble proteins in the wheat sieve tube. Plant Physiol. 100, 1433-1441.

    Google Scholar 

  • Frommer W B Hunnel S and Riesmeier J W 1993 Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 90, 5944-5948.

    PubMed  Google Scholar 

  • Fujiwara T, Giesman-Cookmeyer D, Ding B, Lommel S A and Lucas W J 1993 Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5, 1783-1794.

    PubMed  Google Scholar 

  • Goodwin P B 1983 Molecular size limit for movement in the symplast of the Elodealeaf. Planta 157, 124-130.

    Google Scholar 

  • Goodwin P B and Lyndon R F 1983 Synchronisation of cell division during transition to flowering in Sileneapices not due to increased symplast permeability. Protoplasma 116, 219-222.

    Google Scholar 

  • Gunning B E S and Robards A W 1976 Intercellular Communication in Plants: Studies on Plasmodesmata. Springer-Verlag, Berlin, Germany. 387p.

    Google Scholar 

  • Hake S and Freeling M 1986 Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knottedlmutant maize plants are induced by adjacent cells. Nature 320, 621-623.

    Google Scholar 

  • Hedrich R and Schroeder J I 1989 The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. Plant Physiol. 40, 539-569.

    Google Scholar 

  • Hedrich R Schroeder J I and Fernandez J M 1986 Patch-clamp studies on higher plant cells: a perspective. Trends Biochem. Sci. 12, 49-52.

    Google Scholar 

  • Ishiwatari, Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H and Chino M 1995 Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195, 456-463.

    PubMed  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland K C, Nemoto K, Hayashi H, Chino M and Lucas W J 1997 Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta (In Press).

  • Jackson D, Veit B and Hake S 1994 Expression of maize Knottedlrelated homeobox genes in the shoot peristem predicts patterns of morphogenesis in the vegatative shoot. Development 120, 405-423.

    Google Scholar 

  • Karrer E E, Lincoln J E, Hogenbout S, Bennett A B, Bostock R M, Martineau B, Lucas W J, Gilchrist D G and Alexander D 1995 In situ isolation of mRNA from individual cells: creation of cell-specific cDNA libraries. Proc. Natl. Acad. Sci. USA 92, 3814-3818.

    PubMed  Google Scholar 

  • Kawabe S, Fukumorita T and Chino M 1980 Collection of rice phloem sap from stylets of homopterous insects severed by YAG laser. Plant Cell Physiol. 21, 1319-1327.

    Google Scholar 

  • Kochian L V and Lucas W J 1982a Potassium transport in corn rrots. I. Resolution of kinetics into a saturable and a linear component. Plant Physiol. 70, 1723-1731.

    Google Scholar 

  • Kochian L V and Lucas W J 1982b A re-evaluation of the carrier-kinetic approach to ion transport in roots of higher plants. What's New In Plant Physiol. 13, 45-48.

    Google Scholar 

  • Kochian L V and Lucas W J 1983 Potassium transport in corn roots, II. The significance of the root periphery. Plant Physiol. 73, 208-215.

    Google Scholar 

  • Kochian L V and Lucas W J 1988 Potassium transport in roots. Adv. Bot. Res. 15, 93-178.

    Google Scholar 

  • Kochian L V, **n-Zhi J and Lucas W J 1985 Potassium transport in corn roots. IV. Characterization of the linear component. Plant Physiol. 79, 771-776.

    Google Scholar 

  • Kühn C, Franceschi V R, Schulz A, Lemoine R and Frommer W B 1997 Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275, 1298-1300.

    Article  PubMed  Google Scholar 

  • Lucas W J 1995 Plasmodesmata: intercellular channels for macromolecular transport in plants. Current Opinion Cell Biol. 7, 673-680.

    PubMed  Google Scholar 

  • Lucas W J, Ding B and van der Schoot C 1993a Plasmodesmata and the supracellular nature of plants. New Phytol. 125, 435-476.

    Google Scholar 

  • Lucas W J, Olesinski A, Hull R J, Haudenshield J, Deom C M, Beachy R N and Wolf S 1993b Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190, 88-96.

    Google Scholar 

  • Lucas W J and Wolf S 1993 Plasmodesmata: the intercellular organelle of green plants. Trends in Cell Biol. 3, 308-315.

    Google Scholar 

  • Lucas W J and Gilbertson R L 1994 Plasmodesmata in relation to viral movement within leaf tissues. Annu. Rev. Phytopathol. 32, 387-411.

    Google Scholar 

  • Lucas W J, Bouche-Pillon S, Jackson D P, Ngnyen L, Baker L, Ding B, and Hake S 1995 Selective trafficking of KNOTTED1 and its mRNA through plant plasmodesmata. Science 270, 1980-1983.

    PubMed  Google Scholar 

  • Lucas W J, Balachandran S, Park J and Wolf S 1996 Plasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport: insights gained from viral movement proteins. J. Exp. Bot. 47, 1119-1128.

    Google Scholar 

  • Mezitt L A, and Lucas W J 1996 Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Mol. Biol. 32, 251-273.

    PubMed  Google Scholar 

  • Münch E 1930 Die Stoffbewegung in der Pflanze. Gustav Fischer, Jena.

    Google Scholar 

  • Nissen P 1974 Uptake mechanisms: inorganic and organic. Annu. Rev. Plant Physiol. 25, 53-79.

    Google Scholar 

  • Nakamura S, Hayashi H, Mori S and Chino M 1993 Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol. 34, 927-933.

    Google Scholar 

  • Nakamura S, Hayashi H, Mori S and Chino M 1996 Detection and characterization of protein kinases in rice phloem sap. Plant Cell Physiol. 36, 17-27.

    Google Scholar 

  • Noueiry A O, Lucas W J and Gilbertson R L 1994 Two Proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76, 925-932.

    PubMed  Google Scholar 

  • Olesinski A A, Lucas W J, Galun E and Wolf S 1995 Pleiotropic effects of TMV-MP on carbon metabolism and export in transgenic tobacco plants. Planta 197, 118-126.

    Google Scholar 

  • Olesinski A A, Almon E, Navot N, Galun E, Lucas W J and Wolf S 1996 Tissue specific expression of tobacco mosaic virus movement protein in transgenic potato plants alters plasmodesmal function and carbohydrate partitioning. Plant Physiol. 111, 541-550.

    PubMed  Google Scholar 

  • Overall R L, and Gunning B E S 1982 Intercellular communication in Azollaroots: II. Electrical coupling. Protoplasma 111, 151-160.

    Google Scholar 

  • Robards A W and Lucas W J 1990 Plasmodesmata. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 369-419.

    Google Scholar 

  • Sakuth T, Schobert C, Pecsvaradi A, Eichholz A, Komor E and Orlich G 1993 Specific proteins in the sieve-tube exudates of Ricinus communisL. seedlings: separation, characterization and in-vivo labeling. Planta 191, 207-213.

    Google Scholar 

  • Schachtman D P, Schroeder J I, Lucas W J, Anderson J A and Gaber RF 1992 Expression of an inward-rectifying potassium channel by the Arbidopsis KAT1cDNA. Science 258, 1654-1658.

    PubMed  Google Scholar 

  • Schobert C, Großmann P, Gottschalk M, Komor E, Pecsvaradi A and Nieden U Z 1995 Sieve-tube exudate from Ricinus communisL. seedlings contains ubiquitin and chaperones. Planta 196, 205-210.

    Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J-M, Gaymard F and Grignon C. 1992 Cloning and expression in yeast of a plant potassium transport system. Science 256, 663-665.

    PubMed  Google Scholar 

  • Sommer H, Beltran JP, Huijser P, Pape H, Lonnig W E, Saedler H and Schwartz-Sommer Z 1990 Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605-613.

    PubMed  Google Scholar 

  • Spanswick R M 1972 Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta 102, 215-227.

    Google Scholar 

  • Spanswick R M and Costerton J W F 1967 Plasmodesmata in Nitella translucens: structure and electrical resistance. J. Cell Sci. 2, 451-464.

    PubMed  Google Scholar 

  • Sussman M R 1994 Molecular analysis of proteins in the plasma membrane. Annu. Rev. Plant Physiol. Plant Molec. Biol. 45, 211-234.

    Google Scholar 

  • Sze H 1985 H+-Translocating ATPases: advances using membrane vesicles. Annu. Rev. Plant Physiol. 36, 175-208.

    Google Scholar 

  • Tanner W and Caspari T 1996 Membrane transport carriers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 595-626.

    PubMed  Google Scholar 

  • Tester M 1990 Plant ion channels: whole cell and single channel studies. New Phytol. 114, 305-340.

    Google Scholar 

  • Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig W E, Saedler H, Sommer H and Schwartz-Sommer Z 1992 GLOBOSA: a homeotic gene which interacts with DEFICIENSin the control of Antirrhinumfloral organogenesis. EMBO J. 11, 4693-4704.

    PubMed  Google Scholar 

  • Vorob'ev L N, Tarkhanov K A and Vakhmistrov D B 1982 Use of the electrical coupling factor for quantitative estimation of symplasmic communications. Soviet Plant Physiol. 28, 495-502.

    Google Scholar 

  • Waigmann E, Lucas W J, Citovsky V and Zambryski P 1994 Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc. Natl Acad. Sci. USA 91, 1433-1437.

    PubMed  Google Scholar 

  • Wolf S, Deom C M, Beachy R N and Lucas W J 1989 Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246, 377-379.

    Google Scholar 

  • Wolf S, Deom C M, Beachy R and Lucas W J 1991 Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell 3, 593-604.

    PubMed  Google Scholar 

  • Wolf S and Lucas W J 1997 Plasmodesmal-mediated plant communication network: Implications for controlling carbon metabolism and resource allocation. InA Molecular Approach to Primary Metabolism in Higher Plants. Eds. C Foyer and P Quick. pp 219-236. Taylor & Francis, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, W.J. Application of microinjection techniques to plant nutrition. Plant and Soil 196, 175–189 (1997). https://doi.org/10.1023/A:1004289605333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004289605333

Navigation