Log in

An Assessment of the Phylogenetic Relationship Among Sugarcane and Related Taxa Based on the Nucleotide Sequence of 5S rRNA Intergenic Spacers

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

5S rRNA intergenic spacers were amplified from two elite sugarcane (Saccharumhybrids) cultivars and their related taxa by polymerase chain reaction (PCR) with 5S rDNA consensus primers. Resulting PCR products were uniform in length from each accession but exhibited some degree of length variation among the sugarcane accessions and related taxa. These PCR products did not always cross hybridize in Southern blot hybridization experiments. These PCR products were cloned into a commercial plasmid vector PCR™ 2.1 and sequenced. Direct sequencing of cloned PCR products revealed spacer length of 231–237 bp for S. officinarum, 233–237 for sugarcane cultivars, 228–238 bp for S. spontaneum, 239–252 bp for S. giganteum, 385–410 bp for Erianthusspp., 226–230 bp for Miscanthus sinensisZebra, 206–207 bp for M. sinensisIMP 3057, 207–209 bp for Sorghum bicolor, and 247–249 bp for Zea mays. Nucleotide sequence polymorphism were found at both the segment and single nucleotide level. A consensus sequence for each taxon was obtained by Align X. Multiple sequences were aligned and phylogenetic trees constructed using Align X, CLUSTAL and DNAMAN programs. In general, accessions of the following taxa tended to group together to form distinct clusters: S. giganteum, Erianthusspp., M. sinensis, S. bicolor, and Z. mays. However, the two S. officinarumclones and two sugarcane cultivars did not form distinct clusters but interrelated within the S. spontaneumcluster. The disclosure of these 5S rRNA intergenic spacer sequences will facilitate marker-assisted breeding in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels, R., W.L. Gerlach, E. Dennis, H. Swift & W.J. Peacock, 1980. Molecular and chromosomal organization of DNA sequences for the ribosomal RNAs in cereals. Chromosoma 78: 293–312.

    Article  CAS  Google Scholar 

  • Berding, N. & B.T. Roach, 1987. Germplasm collection, maintenance, and use, pp. 143–210 in Sugarcane Improvement Through Breeding, edited by D.J. Heinz. Elsevier, New York.

    Google Scholar 

  • Besse, P., C.L. McIntyre & N. Berding, 1996. Ribosomal DNA variations in Erianthus, a wild sugarcane relative (Andropogoneae-Saccharinae). Theor. Appl. Genet. 92: 733–743.

    Article  CAS  Google Scholar 

  • Besse, P., G. Taylor, B. Carroll, N. Berding, D. Burner & C.L. McIntyre, 1998. Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104: 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, G., 1923. A cytological investigation of some species and species-hybrids of the genus Saccharum. Genetica 5: 273–326.

    Article  Google Scholar 

  • Burner, D.M., 1991. Cytogenetic analyses of sugarcane relatives in the subtribe Saccharinae. Euphytica 54: 125–133.

    Article  Google Scholar 

  • Burner, D.M., 1997. Chromosome transmission and meiotic behavior in various sugarcane crosses. J. Am. Soc. Sugar Cane Technol. 17: 38–50.

    Google Scholar 

  • Burner, D.M. & R.D. Webster, 1994. Cytological studies on North American species of Saccharum (Poaceae:Andropogoneae). SIDA 16: 233–244.

    Google Scholar 

  • Burner, D.M., Y.-B. Pan & R.D. Webster, 1997. Genetic diversity of new world and old world Saccharumassessed by RAPD analysis. Genet. Res. Crop Evol. 44: 235–240.

    Article  Google Scholar 

  • Burnquist, W.B., 1991. Development and application of restriction fragment length polymorphism technology in sugarcane (Saccharumspp.) breeding. Ph.D. dissertation, Cornell University, Ithaca, NY.

    Google Scholar 

  • Cox, A.V., M.D. Bennett & T.A. Dyer, 1992. Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5SrRNA gene clusters and to locate such clusters in wheat (Triticum aestivumL.). Theor. Appl. Genet. 83: 684–690.

    Article  CAS  Google Scholar 

  • Cronn, R.C., X. Zhao, A.H. Paterson & J.F. Wendel, 1996. Polymorphism and concerted evolution in a tandemly repeated family: 5S ribosomal DNA in diploid and allopolyploid cotton. J. Mol. Evol. 42: 685–705.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, J. & B.T. Roach, 1987. Taxonomy and evolution, pp. 7–84, in Sugarcane improvement through breeding, edited by D.J. Heinz. Elsevier Press, Amsterdam.

    Google Scholar 

  • D'Hont, A., Y.H. Lu, P. Feldmann & J.C. Glaszmann, 1993. Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1: 12–15.

    Google Scholar 

  • D'Hont, A., P.S. Rao, P. Feldmann, L. Grivet, N. Islam-Faridi, P. Taylor & J.C. Glaszmann, 1995. Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum X Erianthus arundinaceus, with molecular markers and DNA in situhybridisation. Theor. Appl. Genet. 91: 320–326.

    Article  Google Scholar 

  • D'Hont, A., D. Ison, K. Alix, C. Roux & J.C. Glaszmann, 1998. Determination of basic chromosome numbers in the genus Saccharumby physical map** of ribosomal RNA genes. Genome 41: 221–225.

    Article  Google Scholar 

  • Dvorak, J., H.-B. Zhang, R.S. Kota & M. Lassner, 1989. Organisation and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32: 1003–1016.

    CAS  Google Scholar 

  • Glaszmann, J.C., J.L. Noyer, A. Fautret, C. Lanaud & P. Feldmann, 1989. Molecular genetic markers in sugarcane. Proc. Intl. Soc. Sugar Cane Technol. 2: 872–882.

    Google Scholar 

  • Glaszmann, J.C., Y.H. Lu & C. Lanaud, 1990. Variation of nuclear ribosomal DNA in sugarcane. J. Genet. Breed. 44: 191–198.

    Google Scholar 

  • Hamby, R.K. & E.A. Zimmer, 1988. Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). Pl. Syst. Evol. 160: 29–37.

    Article  CAS  Google Scholar 

  • Higgins, D.G. & P.M. Sharp, 1988. A package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, E.A. & R. Appels, 1995. Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140: 325–343.

    PubMed  CAS  Google Scholar 

  • Milligan, S.B., F.A. Martin, K.P. Bischoff, J.P. Quebedeaux, E.O. Dufrene, K.L. Quebedeaux, J.W. Hoy, T.E. Reagan, B.L. Legendre & J.D. Miller, 1994. Registration of ‘LCP 85-384’ sugarcane. Crop Sci. 34: 819–820.

    Article  Google Scholar 

  • Mohan, N. & T.V. Sreenivasan, 1983. Chromosome number in the genus Erianthus, Michx (Poaceae) of Indonesian Archipelago. Cell Chrom. Res. 6: 14–16.

    Google Scholar 

  • Mukai, Y., T.R. Endo & B.S. Gill, 1990. Physical map** of the 5S rRNA multigene family in common wheat. J. Hered. 81: 290–295.

    CAS  Google Scholar 

  • Mukherjee, S.K., 1957. Origin and distribution of Saccharum. Bot. Gaz. 119: 55–61.

    Article  Google Scholar 

  • Ohmido, N. & K. Fukui, 1995. Cytological studies of African cultivated rice, Oryza glaberrima. Theor. Appl. Genet. 91: 212–217.

    Article  CAS  Google Scholar 

  • Pan, Y.-B., M.P. Grisham & D.M. Burner, 1997. A polymerase chain reaction protocol for the detection of Xanthomonas albilineans, the causal agent of sugarcane leaf scald disease. Plant Dis. 81: 189–194.

    CAS  Google Scholar 

  • Panje, R.R. & C.N. Babu, 1960. Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia (Tokyo) 25: 152–172.

    Google Scholar 

  • Price, S., 1965. Interspecific hybridisation in sugarcane breeding. Proc. Int. Soc. Sugar Cane Technol. 12: 1021–1026.

    Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Song, Y.C. & J.P. Gustafson, 1993. Physical map** of the 5S rDNA gene complex in rice (Oryza sativa). Genome 36: 658–661.

    CAS  PubMed  Google Scholar 

  • Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. Freeman, San Francisco, 573 pp. Springer, P.S., E.A. Zimmer & J.L. Bennetzen, 1989. Genomic organization of the ribosomal DNA of sorghum and its close relatives. Theor. Appl. Genet. 77: 844–850.

  • Sreenivasan, T.V., B.S. Ahloowalia & D.J. Heinz, 1987. Cytogenetics, pp. 211–253, in Sugarcane improvement through breeding, edited by D.J. Heinz. Elsevier Press, Amsterdam.

    Google Scholar 

  • Thompson J.D., D.G. Higgins & T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22(22): 4673–4680.

    PubMed  CAS  Google Scholar 

  • Wilbur, W.J. & D.J. Lipman, 1983. Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 60: 726–730.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, YB., Burner, D. & Legendre, B. An Assessment of the Phylogenetic Relationship Among Sugarcane and Related Taxa Based on the Nucleotide Sequence of 5S rRNA Intergenic Spacers. Genetica 108, 285–295 (2000). https://doi.org/10.1023/A:1004191625603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004191625603

Navigation