Log in

A ground state of PPARγ activity and expression is required for appropriate neural differentiation of hESCs

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Several evidences indicate stimulation of peroxisome proliferator activated receptor γ (PPARg), promotes neuronal differentiation. This study was conducted to testify the prominence of PPARγ during neural differentiation of human embryonic stem cells (hESCs).

Methods

PPARγ expression level was assessed during neural differentiation of hESCs. Meanwhile, the level of endogenous miRNAs, which could be engaged in regulation of PPARγ expression, was measured. Next, natural and synthetic components of PPARγ agonists and antagonist were implemented on neural progenitor formation during neural differentiation of hESCs.

Results

Data showed an increasing wave of PPARγ expression level when human neural progenitors (NPs) were formed upon retinoic acid treatment. Interestingly, there was no significant difference in the amount of PPARγ proteins during the differentiation of hESCs that is inconsistent with what we observed for RNA level. Our results indicated that miRNAs are not involved in the regulation of PPARγ expression, while proteasome-mediated degradation may to some degree be involved in this process. Among numerous treatments, PPARγ inactivation during NPs formation significantly decreased expression of NP markers.

Conclusions

We conclude that a ground state of PPARγ activity is required for NP formation of hESCs during early neural differentiation. However, high expression and activity of PPARγ could not enhance the required neural differentiation, whereas the PPARγ inactivation could negatively influence NP formation from hESCs by antagonist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumberg B, Evans RM. Orphan nuclear receptors new ligands and new possibilities. Genes Dev 1998;12:3149–55.

    Article  CAS  PubMed  Google Scholar 

  2. Escher P, Wahli W. PPARs: insight into multiple cellular functions. Mutat Res 2000;488:121–38.

    Article  Google Scholar 

  3. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000;405:421–4.

    Article  CAS  PubMed  Google Scholar 

  4. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for PPARγ. J Biol Chem 1995;270:12953–56.

    Article  CAS  PubMed  Google Scholar 

  5. Miglio G, Rattazzi L, Rosa AC, Fantozzi R. PPARγ stimulation promotes neurite outgrowth in SH-SY5Y human neuroblastoma cells. Neurosci Lett 2009;454:134–8.

    Article  CAS  PubMed  Google Scholar 

  6. Wright HM, Clish CB, Mikami T, Hauser S, Yanagi K, Hiramatsu R, et al. A synthetic antagonist for the PPARγ inhibits adipocyte differentiation. J Biol Chem 2000;275:1873–7.

    Article  CAS  PubMed  Google Scholar 

  7. Perez-Ortiz JM, Tranque P, Vaquero CF, Domingo B, Molina F, Calvo S, et al. Glitazones differentially regulate primary astrocyte and glioma cell survival involvement of ROS and PPARγ. J Biol Chem 2004;279:8976–85.

    Article  CAS  PubMed  Google Scholar 

  8. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. ESC lines derived from human blastocysts. Science 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  9. Dhara SK, Stice SL. Neural differentiation of hESCs. J Cell Biochem 2008;105: 633–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denham M, Dottori M. Signals involved in neural differentiation of hESCs. Neurosignals 2009;17:234–41.

    Article  CAS  PubMed  Google Scholar 

  11. Rosen ED, Spiegelman BM. PPARγ/a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001;276:37731–34.

    Article  CAS  PubMed  Google Scholar 

  12. Lehrke M, Lazar MA. The many faces of PPARγ. Cell 2005;123:993–9.

    Article  CAS  PubMed  Google Scholar 

  13. Tsai YS, Maeda N. PPARγ: a critical determinant of body fat distribution in humans and mice. Trends Cardiovasc Med 2005;5:81–5.

    Article  CAS  Google Scholar 

  14. Wada K, Nakajima A, Katayama K, Kudo C, Shibuya A, Kubota N, et al. PPARγ-mediated regulation of NSC proliferation and differentiation. J Biol Chem 2006;281:12673–81.

    Article  CAS  PubMed  Google Scholar 

  15. Mo C, Chearwae W, Bright JJ. PPARγ regulates LIF-induced growth and self-renewal of mESCs through Tyk2-Stat3 pathway. Cell Signal 2009;22(3): 495–500.

    Article  CAS  Google Scholar 

  16. Cristiano L, Bernardo A, Ceru MP. PPARs and peroxisomes in rat cortical and cerebellar astrocytes. J Neurocytol 2001;30:671–83.

    Article  CAS  PubMed  Google Scholar 

  17. Woods JW, Tanen M, Figueroa DJ, Biswas C, Zycband E, Moller DE, et al. Localization of PPARγ in murine CNS: expression in oligodendrocytes and neurons. Brain Res 2003;975:10–21.

    Article  CAS  PubMed  Google Scholar 

  18. Moreno S, Farioli-Vecchioli S, Ceru MP. Immunolocalization of PPARs and RXRs in the adult rat CNS. Neuroscience 2004;123:131–45.

    Article  CAS  PubMed  Google Scholar 

  19. Park KS, Lee RD, Kang SK, Han SY, Park KL, Yang KH, et al. Neuronal differentiation of embryonic midbrain cells by upregulation of PPARγ via the JNK-dependent pathway. Exp Cell Res 2004;297:424–33.

    Article  CAS  PubMed  Google Scholar 

  20. Satoh T, Furutam K, Tomokiyomm K, Nakatsuka D, Tanikawa M, Nakanishi M, et al. Facilitatory roles of novel compounds designed from cyclopentenone prostaglandins on neurite outgrowth-promoting activities of NGF. J Neurochem 2000;75:1092–102.

    Article  CAS  PubMed  Google Scholar 

  21. Han SW, Greene ME, Pitts J, Wada RK, Sidell N. Novel expression and function of PPARγ in human neuroblastoma cells. Clin Cancer Res 2001;7(1):98–104.

    CAS  PubMed  Google Scholar 

  22. Jung KM, Park KS, Oh JH, Jung SY, Yang KH, Song YS, et al. Activation of p38 MAPK and activator protein-1 during the promotion of neurite extension of 15d-PGJ2. Mol Pharmacol 2003;63(3):607–16.

    Article  CAS  PubMed  Google Scholar 

  23. Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C, Cortes-Canteli M, Santos A, Garcia-Verdugo JM, et al. PPARγ ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia 2011;59:293–307.

    Article  PubMed  Google Scholar 

  24. Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ. PPARγ agonists promote oligodendrocyte differentiation of NSCs by modulating stemness and differentiation genes. PLoS ONE 2012;7(11).

  25. Ghoochani A, Shabani K, Peymani M, Ghaedi K, Karamali F, Karbalaei K, et al. The influence of PPARγ1 during differentiation of mESCs to neural cells. Differentiation 2012;83:60–7.

    Article  CAS  PubMed  Google Scholar 

  26. Baharvand H, Mehrjardi Z, Hatami M, Kiani S, Rao M, Haghighi MR. Neural differentiation from hESCs in a defined adherent culture condition. Int J Dev Biol 2007;51:371–8.

    Article  CAS  PubMed  Google Scholar 

  27. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. BFGF and suppression of BMP signaling sustain undifferentiated proliferation of hESCs. Nat Methods 2005;2:185–90.

    Article  CAS  PubMed  Google Scholar 

  28. Bugge A, Grøntved L, Aagaard M, Borup R, Mandrup S. The PPARγ2 A/B-domain plays a gene-specific role in transactivation and cofactor recruitment. Mol Endocrinol 2009;23:794–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Collino M, Patel N, Lawrence K, Collin M, Latchman D, Yaqoob M, et al. The selective PPARγ antagonist GW9662 reverses the protection of LPS in a model of renal ischemia–reperfusion. Kidney Int 2005;68:529–36.

    Article  CAS  PubMed  Google Scholar 

  30. Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, et al. Functional consequences of cysteine modification in the ligand binding sites of PPARs by GW9662. Biochemistry 2002;41:6640–50.

    Article  CAS  PubMed  Google Scholar 

  31. Sundberg M, Savola S, Hienola A, Korhonen L, Lindholm D. Glucocorticoid hormones decrease proliferation of embryonic NSCs through ubiquitin-mediated degradation of cyclin D1. J Neurosci 2006;26(20):5402–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rohwedel J, Guan K, Wobus AM. Induction of cellular differentiation by RA in vitro. Cells Tissues Organs 1999;165:190–202.

    Article  CAS  PubMed  Google Scholar 

  33. Glaser T, Brüstle O. RA induction of ESC derived neurons: the radial glia connection. Trends Neurosci 2005;28:397–400.

    Article  CAS  PubMed  Google Scholar 

  34. Maden M. RA in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007;8:755–65.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem Biophys Res Commun 2010;392(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  36. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, et al. miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun 2009;390(2):247–51.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang JF, Fu WM, He ML, **e WD, Lv Q, Wan G, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 2011;8(5):829–38.

    Article  CAS  PubMed  Google Scholar 

  38. Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, et al. miR-130 suppresses adipogenesis by inhibiting PPARγ expression. Mol Cell Biol 2011;31(4):626–38.

    Article  CAS  PubMed  Google Scholar 

  39. Desvergne B, Wahli W. PPARs: nuclear control of metabolism. Endocr Rev 1999;20:649–88.

    CAS  PubMed  Google Scholar 

  40. Baharvand H, Fathi A, Gourabi H, Mollamohammadi S, Salekdeh GH. Identification of mESC-associated proteins. J Proteome Res 2008;7(1):412–23.

    Article  CAS  PubMed  Google Scholar 

  41. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15d-PGJ2 is a ligand for the adipocyte determination factor PPARγ. Cell 1995;83:803–12.

    Article  CAS  PubMed  Google Scholar 

  42. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, et al. Sequential treatment of SH-SY5Y cells with retinoic acid and BDNF gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 2000;75:991–1003.

    Article  CAS  PubMed  Google Scholar 

  43. Cai C, Grabel L. Directing the differentiation of ESCs to NSCs. Dev Dyn 2007;236:3255–66.

    Article  CAS  PubMed  Google Scholar 

  44. Chen L, Chen Y, Zhang S, Ye L, Cui J, Sun Q, et al. ATMiR-540 as a novel adipogenic inhibitor impairs adipogenesis via suppression of PPARγ. J Cell Biochem 2015;116(6):969–76.

    Article  CAS  PubMed  Google Scholar 

  45. Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 2013;110(9): 3387–92.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ma X, Yang P, Kaplan WH, Lee BH, Wu LE, Yang JY, et al. ISL1 regulates peroxisome proliferator-activated receptor γ activation and early adipogenesis via bone morphogenetic protein 4-dependent and -independent mechanisms. Mol Cell Biol 2014;34(19):3607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu B, Gerin I, Miao H, Vu-Phan D, Johnson CN, Xu R, et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS ONE 2010;5(12):14199.

    Article  CAS  Google Scholar 

  48. Li N, Kelsh RN, Croucher P, Roehl HH. Regulation of neural crest cell fate by the retinoic acid and PPARγ signalling pathways. Development 2010;137(3): 389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamran Ghaedi or Mohammad Hossein Nasr-Esfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M., Salamian, A., Ghaedi, K. et al. A ground state of PPARγ activity and expression is required for appropriate neural differentiation of hESCs. Pharmacol. Rep 67, 1103–1114 (2015). https://doi.org/10.1016/j.pharep.2015.04.011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2015.04.011

Keywords

Navigation