Log in

Recent Advances in Liquid Metal-Based Flexible Devices with Highly Sensitive, Plastic and Biocompatible in Bionic Electronics

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Liquid metal-based bionic electronics are a new type of wearable electronic device with high sensitivity, high selectivity, high biocompatibility, and high stretchability, which can provide efficient, convenient, and novel applications in the fields of real-time health detection, extreme environments, electromagnetic signal shielding, in vivo detection, and neural signaling. The combination of liquid metal and a flexible substrate mimics Young’s modulus of biological tendons and the flexible structure inside of the human body, thus enabling the simulation of various human tissues and the detection and transmission of physiological signals, which has promoted the application of biomimetic liquid metal electronics in the field of human health detection. In this review, we provide an up-to-date overview of liquid metal-based bionic flexible devices for wearable electronics, explore the performance potential and development status of liquid metals (LMs), and focus on the technical problems and latest research on liquid metal-based bionic electronic devices that we hope to provide meaningful ideas and reference directions in the research of LMs flexible devices. Firstly, we assess the properties, preparation, and working mechanisms of different classes of LMs and present the selection and fabrication of LMs in biomimetic devices and their excellent intrinsic properties. Then, we present some of the interrelated applications of liquid metal-based putative electronic devices for monitoring various biological signals and electronics based on their unique properties. Finally, we summarize the advantages, challenges, and possible future developments of liquid metal-based biomimetic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

There is no associated data. No new data were created or analyzed in this study.

References

  1. H. Ponnuru, I. Marriam, I. Rambukwella, J.C. Zheng, C. Yan, Recent advances in liquid metals for rechargeable batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309706

    Article  Google Scholar 

  2. Y. Han, L.E. Simonsen, M.H. Malakooti, Printing liquid metal elastomer composites for high-performance stretchable thermoelectric generators. Adv. Energy Mater. 12, 1413 (2022). https://doi.org/10.1002/aenm.202201413

    Article  CAS  Google Scholar 

  3. L. Wang, R. Lai, L. Zhang, M. Zeng, L. Fu, Emerging liquid metal biomaterials: from design to application. Adv. Mater. 34, e2201956 (2022). https://doi.org/10.1002/adma.202201956

    Article  CAS  PubMed  Google Scholar 

  4. T. Daeneke, K. Khoshmanesh, N. Mahmood, I.A. de Castro, D. Esrafilzadeh, S.J. Barrow, M.D. Dickey, K. Kalantar-zadeh, Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018). https://doi.org/10.1039/c7cs00043j

    Article  CAS  PubMed  Google Scholar 

  5. L. Ren, X. Xu, Y. Du, K. Kalantar-Zadeh, S.X. Dou, Liquid metals and their hybrids as stimulus–responsive smart materials. Mater. Today 34, 92–114 (2020). https://doi.org/10.1016/j.mattod.2019.10.007

    Article  CAS  Google Scholar 

  6. X.L. Guo, L.Y. Zhang, Y. Ding, J.B. Goodenough, G.H. Yu, Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci. 12, 2605–2619 (2019). https://doi.org/10.1039/c9ee01707k

    Article  CAS  Google Scholar 

  7. Y.H. Dai, M.F. Li, B.Q. Ji, X. Wang, S.Y. Yang, P. Yu, S. Wang, C.L. Hao, Z.K. Wang, Liquid metal droplets bouncing higher on thicker water layer. Nat. Commun. 14, 3532 (2023). https://doi.org/10.1038/s41467-023-39348-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. He, J. You, M.D. Dickey, X. Wang, Controllable flow and manipulation of liquid metals. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309614

    Article  Google Scholar 

  9. N. Yang, F. Gong, Y. Zhou, Q. Yu, L. Cheng, Liquid metals: preparation, surface engineering, and biomedical applications. Coord. Chem. Rev. 471, 214731 (2022). https://doi.org/10.1016/j.ccr.2022.214731

    Article  CAS  Google Scholar 

  10. P.E. Mason, F. Uhlig, V. Vanek, T. Buttersack, S. Bauerecker, P. Jungwirth, Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 7, 250–254 (2015). https://doi.org/10.1038/Nchem.2161

    Article  CAS  PubMed  Google Scholar 

  11. S.S. Leonchuk, A.S. Falchevskaya, V. Nikolaev, V.V. Vinogradov, NaK alloy: underrated liquid metal. J. Mater. Chem. A 10, 22955–22976 (2022). https://doi.org/10.1039/d2ta06882f

    Article  CAS  Google Scholar 

  12. S. Chen, Z. Cui, H. Wang, X. Wang, J. Liu, Liquid metal flexible electronics: past, present, and future. Appl. Phys. Rev. 10, 629 (2023). https://doi.org/10.1063/5.0140629

    Article  CAS  Google Scholar 

  13. H. Kim, G. Zan, Y. Seo, S. Lee, C. Park, Stimuli-responsive liquid metal hybrids for human-interactive electronics. Adv. Func. Mater. (2023). https://doi.org/10.1002/adfm.202308703

    Article  Google Scholar 

  14. J.X. Wang, G.F. Cai, S.H. Li, D.C. Gao, J.Q. **ong, P.S. Lee, Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv. Mater. 30, 157 (2018). https://doi.org/10.1002/adma.201706157

    Article  CAS  Google Scholar 

  15. N. Flores, F. Centurion, J. Zheng, M. Baharfar, M. Kilani, M.B. Ghasemian, F.M. Allioux, J. Tang, J. Tang, K. Kalantar-Zadeh et al., Polyphenol-mediated liquid metal composite architecture for solar thermoelectric generation. Adv. Mater. 36, e2308346 (2023). https://doi.org/10.1002/adma.202308346

    Article  CAS  PubMed  Google Scholar 

  16. H. Wang, W. **ng, S. Chen, C. Song, M.D. Dickey, T. Deng, Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv. Mater. 33, e2103104 (2021). https://doi.org/10.1002/adma.202103104

    Article  CAS  PubMed  Google Scholar 

  17. H. Bark, M.W.M. Tan, G. Thangavel, P.S. Lee, Deformable high loading liquid metal nanoparticles composites for thermal energy management. Adv. Energy Mater. 11, 1387 (2021). https://doi.org/10.1002/aenm.202101387

    Article  CAS  Google Scholar 

  18. S. Ki, J. Shim, S. Oh, E. Koh, D. Seo, S. Ryu, J. Kim, Y. Nam, Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials. Int. J. Heat Mass Transfer 170, 121012 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121012

    Article  CAS  Google Scholar 

  19. C.J. Zhang, Y. Tang, T.Y. Guo, Y.Z. Sang, D. Li, X.L. Wang, O.J. Rojas, J.L. Guo, Liquid metal compartmented by polyphenol-mediated nanointerfaces enables high-performance thermal management on electronic devices. Infomat (2023). https://doi.org/10.1002/inf2.12466

    Article  Google Scholar 

  20. X.H. Wang, C.N. Lu, W. Rao, Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications. Appl. Therm. Eng. 192, 116937 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116937

    Article  CAS  Google Scholar 

  21. S.Y. Tang, R.R. Qiao, S. Yan, D. Yuan, Q.B. Zhao, G.L. Yun, T.P. Davis, W.H. Li, Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles. Small 14, 118 (2018). https://doi.org/10.1002/smll.201800118

    Article  CAS  Google Scholar 

  22. T.Y. Liu, P. Sen, C.J.C.J. Kim, Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J. Microelectromech. Syst. 21, 443–450 (2012). https://doi.org/10.1109/Jmems.2011.2174421

    Article  CAS  Google Scholar 

  23. L. Zhu, B. Wang, S. Handschuh-Wang, X. Zhou, Liquid metal-based soft microfluidics. Small 16, e1903841 (2020). https://doi.org/10.1002/smll.201903841

    Article  CAS  PubMed  Google Scholar 

  24. M. Zadan, C. Chiew, C. Majidi, M.H. Malakooti, Liquid metal architectures for soft and wearable energy harvesting devices. Multifunct. Materials 4, 012001 (2021). https://doi.org/10.1088/2399-7532/abd4f0

    Article  CAS  Google Scholar 

  25. C.Q. Shi, Z.N. Zou, Z.P. Lei, P.C. Zhu, W. Zhang, J.L. **ao, Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci. Adv. 6, 0202 (2020). https://doi.org/10.1126/sciadv.abd0202

    Article  CAS  Google Scholar 

  26. L. Ding, D. Wu, Q. Wang, S. Wang, Z. Su, D. Zhang, Fast-response and durable liquid metal wire for wearable electronics. Chem. Eng. J. 473, 145172 (2023). https://doi.org/10.1016/j.cej.2023.145172

    Article  CAS  Google Scholar 

  27. S. Chen, S. Fan, J. Qi, Z. **ong, Z. Qiao, Z. Wu, J.C. Yeo, C.T. Lim, Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor. Adv. Mater. 35, e2208569 (2023). https://doi.org/10.1002/adma.202208569

    Article  CAS  PubMed  Google Scholar 

  28. S. Veerapandian, W. Jang, J.B. Seol, H. Wang, M. Kong, K. Thiyagarajan, J. Kwak, G. Park, G. Lee, W. Suh et al., Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 20, 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7

    Article  CAS  PubMed  Google Scholar 

  29. X. Tao, Liquid metal gives transmission lines a softer touch. Nat. Electron. 3, 300–301 (2020). https://doi.org/10.1038/s41928-020-0431-y

    Article  Google Scholar 

  30. A. Hirsch, L. Dejace, H.O. Michaud, S.P. Lacour, Harnessing the rheological properties of liquid metals to shape soft electronic conductors for wearable applications. Acc. Chem. Res. 52, 534–544 (2019). https://doi.org/10.1021/acs.accounts.8b00489

    Article  CAS  PubMed  Google Scholar 

  31. D. Wang, J. Ye, Y. Bai, F. Yang, J. Zhang, W. Rao, J. Liu, Liquid metal combinatorics toward materials discovery. Adv Mater 35, e2303533 (2023). https://doi.org/10.1002/adma.202303533

    Article  CAS  PubMed  Google Scholar 

  32. Y. Jeong, S. Noh, M. Yu, S.P. Chang, H. Eun, J. Kim, Y. Song, Liquid metal electrodynamic accumulation microfluidics system for DNA memory and liquid biopsy. Adv. Funct. Mater. 33, 5680 (2023). https://doi.org/10.1002/adfm.202305680

    Article  CAS  Google Scholar 

  33. V. Maurin, Y. Chang, Q. Ze, S. Leanza, J. Wang, R.R. Zhao, Liquid crystal elastomer-liquid metal composite: ultrafast, untethered, and programmable actuation by induction heating. Adv Mater. (2023). https://doi.org/10.1002/adma.202302765

    Article  PubMed  Google Scholar 

  34. L. Sanchez-Botero, D.S. Shah, R. Kramer-Bottiglio, Are liquid metals bulk conductors? Adv. Mater. 34, e2109427 (2022). https://doi.org/10.1002/adma.202109427

    Article  CAS  PubMed  Google Scholar 

  35. W. Ren, Y. Sun, D.L. Zhao, A. Aili, S. Zhang, C.Q. Shi, J.L. Zhang, H.Y. Geng, J. Zhang, L.X. Zhang et al., High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 7, 0586 (2021). https://doi.org/10.1126/sciadv.abe0586

    Article  CAS  Google Scholar 

  36. R. Guo, X.Y. Sun, B. Yuan, H.Z. Wang, J. Liu, Magnetic liquid Metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv. Sci. 6, 01478 (2019). https://doi.org/10.1002/advs.201901478

    Article  CAS  Google Scholar 

  37. E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018). https://doi.org/10.1038/s41563-018-0084-7

    Article  CAS  PubMed  Google Scholar 

  38. Y.-W. Wu, S. Alkaraki, S.-Y. Tang, Y. Wang, J.R. Kelly, Circuits and antennas incorporating gallium-based liquid metal. Proc. IEEE 111, 955–977 (2023). https://doi.org/10.1109/jproc.2023.3285400

    Article  CAS  Google Scholar 

  39. M.Y. Choi, J.H. Kim, S.K. Kim, H.J. Koo, J.H. So, Textile-based stretchable supercapacitors with liquid metal current collectors. Adv. Func. Mater. (2023). https://doi.org/10.1002/adfm.202310318

    Article  Google Scholar 

  40. Y. Wang, J. Li, L. Sun, H. Chen, F. Ye, Y. Zhao, L. Shang, Liquid metal droplets-based elastomers from electric toothbrush-inspired revolving microfluidics. Adv. Mater. 35, e2211731 (2023). https://doi.org/10.1002/adma.202211731

    Article  CAS  PubMed  Google Scholar 

  41. S. Han, K. Kim, S.Y. Lee, S. Moon, J.Y. Lee, Stretchable electrodes based on over-layered liquid metal networks. Adv. Mater. 35, e2210112 (2023). https://doi.org/10.1002/adma.202210112

    Article  CAS  PubMed  Google Scholar 

  42. S. Zhao, J. Zhang, L. Fu, liquid metals: a novel possibility of fabricating 2D metal oxides. Adv. Mater. 33, e2005544 (2021). https://doi.org/10.1002/adma.202005544

    Article  CAS  PubMed  Google Scholar 

  43. C. Wei, L. Tan, Y. Zhang, Z. Wang, B. **, S. **ong, J. Feng, Y. Qian, Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Mater. 50, 473–494 (2022). https://doi.org/10.1016/j.ensm.2022.05.024

    Article  Google Scholar 

  44. S.N. Patek, Biomimetics and evolution. Science 345, 1448–1449 (2014). https://doi.org/10.1126/science.1256617

    Article  CAS  PubMed  Google Scholar 

  45. T. Knaus, C.E. Paul, C.W. Levy, S. de Vries, F.G. Mutti, F. Hollmann, N.S. Scrutton, Better than nature: nicotinamide biomimetics that outperform natural coenzymes. J. Am. Chem. Soc. 138, 1033–1039 (2016). https://doi.org/10.1021/jacs.5b12252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D. Bradley, Shedding light on biomimetics. Mater. Today 32, 5–5 (2020). https://doi.org/10.1016/j.mattod.2019.12.017

    Article  Google Scholar 

  47. M.Q. Chang, C.H. Dong, H. Huang, L. Ding, W. Feng, Y. Chen, Nanobiomimetic medicine. Adv. Funct. Mater. 32, 04791 (2022). https://doi.org/10.1002/adfm.202204791

    Article  CAS  Google Scholar 

  48. D.P. Li, L.J. Ci, Biomimetics: from biological cells to battery cells. Sci. Bull. 66, 1054–1055 (2021). https://doi.org/10.1016/j.scib.2021.02.036

    Article  CAS  Google Scholar 

  49. S.K. Bhujbal, P. Ghosh, V.K. Vijay, L. Singh, Biomimicry of ruminant digestion strategies for accelerating lignocellulose bioconversion in anaerobic digestion. Trends Biotechnol. 40, 1401–1404 (2022). https://doi.org/10.1016/j.tibtech.2022.08.002

    Article  CAS  PubMed  Google Scholar 

  50. P. Hassanzadeh, F. Atyabi, R. Dinarvand, Nanobionics: from plant empowering to the infectious disease treatment. J. Control. Release 349, 890–901 (2022). https://doi.org/10.1016/j.jconrel.2022.07.028

    Article  CAS  PubMed  Google Scholar 

  51. X.T. **ao, Y. Mei, W.T. Deng, G.Q. Zou, H.S. Hou, X.B. Ji, Electric eel biomimetics for energy storage and conversion. Small Methods (2023). https://doi.org/10.1002/smtd.202201435

    Article  PubMed  Google Scholar 

  52. M. Khare, A. Singh, P. Zamboni, Prospect of brain-machine interface in motor disabilities: the future support for multiple sclerosis patient to improve quality of life. Ann. Med. Health Sci. Res. 4, 305–312 (2014). https://doi.org/10.4103/2141-9248.133447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. P.J. Li, S. Kim, B.Z. Tian, Nanoenabled trainable systems: from biointerfaces to biomimetics. ACS Nano 16, 19651–19664 (2022). https://doi.org/10.1021/acsnano.2c08042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Zeng, Y. He, C. Zhang, Q. Wan, Neuromorphic devices for bionic sensing and perception. Front. Neurosci. 15, 690950 (2021). https://doi.org/10.3389/fnins.2021.690950

    Article  PubMed  PubMed Central  Google Scholar 

  55. Y. Cotur, S. Olenik, T. Asfour, M. Bruyns-Haylett, M. Kasimatis, U. Tanriverdi, L. Gonzalez-Macia, H.S. Lee, A.S. Kozlov, F. Güder, Bioinspired stretchable transducer for wearable continuous monitoring of respiratory patterns in humans and animals. Adv. Mater. 34, 3310 (2022). https://doi.org/10.1002/adma.202203310

    Article  CAS  Google Scholar 

  56. S.S. Duan, Q.F. Shi, J.L. Hong, D. Zhu, Y.C. Lin, Y.H. Li, W. Lei, C.K. Lee, J. Wu, Water-modulated biomimetic hyper- attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano (2023). https://doi.org/10.1021/acsnano.2c09851

    Article  PubMed  PubMed Central  Google Scholar 

  57. C. Yeh, F.-C. Kao, P.-H. Wei, A. Pal, K. Kaswan, Y.-T. Huang, P. Parashar, H.-Y. Yeh, T.-W. Wang, N. Tiwari et al., Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 104, 107852 (2022). https://doi.org/10.1016/j.nanoen.2022.107852

    Article  CAS  Google Scholar 

  58. J.Q. Niu, S.J. Lin, D. Chen, Z.T. Wang, C. Cao, A. Gao, S.S. Cui, Y.L. Liu, Y.P. Hong, X. Zhi et al., A fully elastic wearable electrochemical sweat detection system of tree-bionic microfluidic structure for real-time monitoring. Small (2023). https://doi.org/10.1002/smll.202306769

    Article  PubMed  Google Scholar 

  59. Y. Wang, H. Chang, S. Wang, D. Wang, M. Xue, J. Liu, W. Rao, Biomimetic liquid metal mechatronic devices. Adv. Funct. Mater. 33, 012 (2023)

    Google Scholar 

  60. G. Fang, T.A. He, X.X. Hu, X.M. Yang, S.Q. Zheng, G.Y. Xu, C.Y. Liu, Bionic octopus structure inspired stress-driven reconfigurable microwave absorption and multifunctional compatibility in infrared stealth and De-icing. Chem. Eng. J. 467, 143266 (2023). https://doi.org/10.1016/j.cej.2023.143266

    Article  CAS  Google Scholar 

  61. X.R. Shi, K.Y. Zhang, J.X. Chen, H.Q. Qian, Y.D. Huang, B. Jiang, Octopi tentacles-inspired architecture enables self-healing conductive rapid-photo-responsive materials for soft multifunctional actuators. Adv. Func. Mater. (2023). https://doi.org/10.1002/adfm.202311567

    Article  Google Scholar 

  62. H.Y. Bian, Y.Y. Goh, Y.X. Liu, H.F. Ling, L.H. **e, X.G. Liu, Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater. 33, 6469 (2021). https://doi.org/10.1002/adma.202006469

    Article  CAS  Google Scholar 

  63. D.H. Lee, G.H. Park, S.H. Kim, J.Y. Park, K. Yang, S. Slesazeck, T. Mikolajick, M.H. Park, Neuromorphic devices based on fluorite-structured ferroelectrics. Infomat 4, 12380 (2022). https://doi.org/10.1002/inf2.12380

    Article  CAS  Google Scholar 

  64. X. Wang, Y.X. Ran, X.Q. Li, X.S. Qin, W.L. Lu, Y.W. Zhu, G.H. Lu, Bio-inspired artificial synaptic transistors: evolution from innovative basic units to system integration. Mater. Horiz. 10, 3269–3292 (2023). https://doi.org/10.1039/d3mh00216k

    Article  CAS  PubMed  Google Scholar 

  65. A. Chortos, Z.N. Bao, Skin-inspired electronic devices. Mater. Today 17, 321–331 (2014). https://doi.org/10.1016/j.mattod.2014.05.006

    Article  CAS  Google Scholar 

  66. H. Heidari, Electronic skins with a global attraction. Nat. Electron. 1, 578–579 (2018). https://doi.org/10.1038/s41928-018-0165-2

    Article  Google Scholar 

  67. X.H. Liu, B.Q. Cui, X.C. Wang, M.H. Zheng, Z.X. Bai, O.Y. Yue, Y.F. Fei, H.E. Jiang, Nature-skin-derived e-skin as versatile “wound therapy-health monitoring” bioelectronic skin-scaffolds: skin to bio-e-skin. Adv. Healthc. Mater. 12, 2971 (2023). https://doi.org/10.1002/adhm.202202971

    Article  CAS  Google Scholar 

  68. C. Thrasher, Z. Farrell, N. Morris, C. Willey, C. Tabor, Mechanoresponsive polymerized liquid metal networks. Adv. Mater. 31, 3864 (2019). https://doi.org/10.1002/adma.201903864

    Article  CAS  Google Scholar 

  69. K. Kim, J. Ahn, Y. Jeong, J. Choi, O. Gul, I. Park, All-soft multiaxial force sensor based on liquid metal for electronic skin. Micro Nano Syst. Lett. (2021). https://doi.org/10.1186/s40486-020-00126-9

    Article  Google Scholar 

  70. J.W. Cao, F. Liang, H.Y. Li, X. Li, Y.J. Fan, C. Hu, J. Yu, J. Xu, Y.M. Yin, F.L. Li et al., Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction. Infomat 4, 12302 (2022). https://doi.org/10.1002/inf2.12302

    Article  CAS  Google Scholar 

  71. J. Yang, W.L. Cheng, K. Kalantar-Zadeh, Electronic skins based on liquid metals. Proc. IEEE 107, 2168–2184 (2019). https://doi.org/10.1109/Jproc.2019.2908433

    Article  CAS  Google Scholar 

  72. X.L. Wang, L.L. Fan, J. Zhang, X.Y. Sun, H. Chang, B. Yuan, R. Guo, M.H. Duan, J. Liu, Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv. Funct. Mater. 29, 7063 (2019). https://doi.org/10.1002/adfm.201907063

    Article  CAS  Google Scholar 

  73. F. Krisnadi, L.L. Nguyen, J. Ma, M.R. Kulkarni, N. Mathews, M.D. Dickey, Directed assembly of liquid metal-elastomer conductors for stretchable and self-healing electronics. Adv. Mater. 32, 1642 (2020). https://doi.org/10.1002/adma.202001642

    Article  CAS  Google Scholar 

  74. J.C. Dong, X.W. Tang, Y.D. Peng, C.H. Fan, L. Li, C. Zhang, F.L. Lai, G.J. He, P.M. Ma, Z.C. Wang et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194

    Article  CAS  Google Scholar 

  75. K. Kalantar-Zadeh, J.B. Tang, J.M. Tang, Biomimetics using liquid metals. Matter 6, 2624–2626 (2023). https://doi.org/10.1016/j.matt.2023.08.008

    Article  Google Scholar 

  76. X. Wang, M. Zhao, L. Zhang, K. Li, D. Wang, L. Zhang, A. Zhang, Y. Xu, Liquid metal bionic instant self-healing flexible electronics with full recyclability and high reliability. Chem. Eng. J. 431, 133965 (2022). https://doi.org/10.1016/j.cej.2021.133965

    Article  CAS  Google Scholar 

  77. A.V. Singh, A. Shelar, M. Rai, P. Laux, M. Thakur, I. Dosnkyi, G. Santomauro, A.K. Singh, A. Luch, R. Patil et al., Harmonization risks and rewards: nano-QSAR for agricultural nanomaterials. J. Agric Food Chem. (2024). https://doi.org/10.1021/acs.jafc.3c06466

    Article  PubMed  Google Scholar 

  78. A.V. Singh, M. Varma, M. Rai, S. Pratap Singh, G. Bansod, P. Laux, A. Luch, Advancing predictive risk assessment of chemicals via integrating machine learning, computational modeling, and chemical/nano-quantitative structure-activity relationship approaches. Adv. Intell. Syst. (2024). https://doi.org/10.1002/aisy.202300366

    Article  Google Scholar 

  79. S.Y. Tang, C. Tabor, K. Kalantar-Zadeh, M.D. Dickey, Gallium liquid metal: the Devil’s Elixir. Annu. Rev. Mater. Res. 51, 381–408 (2021). https://doi.org/10.1146/annurev-matsci-080819-125403

    Article  CAS  Google Scholar 

  80. F.M. Allioux, M.B. Ghasemian, W.J. **e, A.P. O’Mullane, T. Daeneke, M.D. Dickey, K. Kalantar-Zadeh, Applications of liquid metals in nanotechnology. Nanoscale Horizons 7, 141–167 (2022). https://doi.org/10.1039/d1nh00594d

    Article  CAS  PubMed  Google Scholar 

  81. L. Zhang, S. Peng, Y. Ding, X. Guo, Y. Qian, H. Celio, G. He, G. Yu, A graphite intercalation compound associated with liquid Na–K towards ultra-stable and high-capacity alkali metal anodes. Energy Environ. Sci. 12, 1989–1998 (2019). https://doi.org/10.1039/c9ee00437h

    Article  CAS  Google Scholar 

  82. Y. Ding, X.L. Guo, Y.M. Qian, H.C. Gao, D.H. Weber, L.Y. Zhang, J.B. Goodenough, G.H. Yu, In situ formation of liquid metals via galvanic replacement reaction to build dendrite-free alkali-metal-ion batteries. Angew. Chem. Int. Edit. 59, 12170–12177 (2020). https://doi.org/10.1002/anie.202005009

    Article  CAS  Google Scholar 

  83. K. Kalantar-Zadeh, M.A. Rahim, J.B. Tang, Low melting temperature liquid metals and their impacts on physical chemistry. Acc. Mater. Res. 2, 577–580 (2021). https://doi.org/10.1021/accountsmr.1c00143

    Article  CAS  Google Scholar 

  84. J.N. Gu, Y. Tao, H. Chen, Z.J. Cao, Y.Z. Zhang, Z.G. Du, Y. Cui, S.B. Yang, Stress-release functional liquid metal-mxene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12, 115 (2022). https://doi.org/10.1002/aenm.202200115

    Article  CAS  Google Scholar 

  85. Y.G. Park, G.Y. Lee, J. Jang, S.M. Yun, E. Kim, J.U. Park, Liquid metal-based soft electronics for wearable healthcare. Adv. Healthc. Mater. 10, 2280 (2021). https://doi.org/10.1002/adhm.202002280

    Article  CAS  Google Scholar 

  86. M.D. Dickey, Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 6425 (2017). https://doi.org/10.1002/adma.201606425

    Article  CAS  Google Scholar 

  87. H. Bark, P.S. Lee, Surface modification of liquid metal as an effective approach for deformable electronics and energy devices. Chem. Sci. 12, 2760–2777 (2021). https://doi.org/10.1039/d0sc05310d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. C.J. Parker, V. Krishnamurthi, K. Zuraiqi, C.K. Nguyen, M. Irfan, F. Jabbar, D. Yang, M.P. Aukarasereenont, E.L.H. Mayes, B.J. Murdoch et al., Synthesis of planet-like liquid metal nanodroplets with promising properties for catalysis. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304248

    Article  Google Scholar 

  89. V.K. Truong, A. Hayles, R. Bright, T.Q. Luu, M.D. Dickey, K. Kalantar-Zadeh, K. Vasilev, Gallium liquid metal: nanotoolbox for antimicrobial applications. ACS Nano 17, 14406–14423 (2023). https://doi.org/10.1021/acsnano.3c06486

    Article  CAS  PubMed  Google Scholar 

  90. X.R. Wu, H. Fang, X. Ma, S. Yan, Gallium-based liquid metals: optical properties, applications, and challenges. Adv. Opt. Mater. (2023). https://doi.org/10.1002/adom.202301180

    Article  Google Scholar 

  91. Y. Yu, E. Miyako, Recent advances in liquid metal manipulation toward soft robotics and biotechnologies. Chemistry 24, 9456–9462 (2018). https://doi.org/10.1002/chem.201800605

    Article  CAS  PubMed  Google Scholar 

  92. Y.R. Ding, M.Q. Zeng, L. Fu, Surface chemistry of gallium-based liquid metals. Matter 3, 1477–1506 (2020). https://doi.org/10.1016/j.matt.2020.08.012

    Article  Google Scholar 

  93. W. **e, F.-M. Allioux, J.Z. Ou, E. Miyako, S.-Y. Tang, K. Kalantar-Zadeh, Gallium-based liquid metal particles for therapeutics. Trends Biotechnol. 39, 624–640 (2021). https://doi.org/10.1016/j.tibtech.2020.10.005

    Article  CAS  PubMed  Google Scholar 

  94. M.D. Dickey, At room temperature. Phys. Today 74, 30–36 (2021). https://doi.org/10.1063/Pt.3.4723

    Article  Google Scholar 

  95. J.H. Fu, T.Y. Liu, Y.T. Cui, J. Liu, Interfacial engineering of room temperature liquid metals. Adv. Mater. Interfaces 8, 1936 (2021). https://doi.org/10.1002/admi.202001936

    Article  CAS  Google Scholar 

  96. G.X. Lu, E.L. Ni, Y.Y. Jiang, W.K. Wu, H. Li, Room-temperature liquid metals for flexible electronic devices. Small (2023). https://doi.org/10.1002/smll.202304147

    Article  PubMed  Google Scholar 

  97. L. Wang, J. Liu, Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials. Front. Energy 7, 317–332 (2013). https://doi.org/10.1007/s11708-013-0271-9

    Article  CAS  Google Scholar 

  98. M.H. Malakooti, M.R. Bockstaller, K. Matyjaszewski, C. Majidi, Liquid metal nanocomposites. Nanoscale Adv. 2, 2668–2677 (2020). https://doi.org/10.1039/d0na00148a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. L. Fu, G.H. Cao, Nanoparticles containing diverse elements made using liquid metal. Nature (2023). https://doi.org/10.1038/d41586-023-01793-5

    Article  PubMed  PubMed Central  Google Scholar 

  100. Q. Wang, Y. Yu, J. Liu, Preparations, characteristics and applications of the functional liquid metal materials. Adv. Eng. Mater. 20, 781 (2018). https://doi.org/10.1002/adem.201700781

    Article  CAS  Google Scholar 

  101. I.A. de Castro, A.F. Chrirnes, A. Zavabeti, K.J. Berean, B.J. Carey, J.C. Zhuang, Y. Du, S.X. Dou, K. Suzuki, R.A. Shanks et al., A gallium-based magnetocaloric liquid metal ferrofluid. Nano Lett. 17, 7831–7838 (2017). https://doi.org/10.1021/acs.nanolett.7b04050

    Article  CAS  Google Scholar 

  102. K. Kalantar-Zadeh, J.B. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart, J. Liu, C. Majidi, R.S. Ruoff, P.S. Weiss, M.D. Dickey, Emergence of liquid metals in nanotechnology. ACS Nano 13, 7388–7395 (2019). https://doi.org/10.1021/acsnano.9b04843

    Article  CAS  PubMed  Google Scholar 

  103. M.D. Bartlett, N. Kazem, M.J. Powell-Palm, X.N. Huang, W.H. Sun, J.A. Malen, C. Majidi, High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. U.S.A. 114, 2143–2148 (2017). https://doi.org/10.1073/pnas.1616377114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. S. Wang, X.Y. Zhao, J. Luo, L.L. Zhuang, D.Q. Zou, Liquid metal (LM) and its composites in thermal management. Composites Part A 163, 107216 (2022). https://doi.org/10.1016/j.compositesa.2022.107216

    Article  CAS  Google Scholar 

  105. W.W. Gao, Y.G. Wang, Q. Wang, G.L. Ma, J. Liu, Liquid metal biomaterials for biomedical imaging. J. Mater. Chem. B 10, 829–842 (2022). https://doi.org/10.1039/d1tb02399c

    Article  CAS  PubMed  Google Scholar 

  106. Y.Y. Lu, Z.X. Che, F.Y. Sun, S. Chen, H. Zhou, P.J. Zhang, Y. Yu, L. Sheng, J. Liu, Mussel-inspired multifunctional integrated liquid metal-based magnetic suspensions with rheological, magnetic, electrical, and thermal reinforcement. ACS Appl. Mater. Interfaces. 13, 5256–5265 (2021). https://doi.org/10.1021/acsami.0c20485

    Article  CAS  PubMed  Google Scholar 

  107. M.K. Zhang, S.Y. Yao, W. Rao, J. Liu, Transformable soft liquid metal micro/nanomaterials. Mater. Sci. Eng. R 138, 1–35 (2019). https://doi.org/10.1016/j.mser.2019.03.001

    Article  CAS  Google Scholar 

  108. T.M. Wu, Revisiting the origin of anomalous structures in liquid Ga. 4th International symposium on slow dynamics in complex systems. Keep Going Tohoku 1518, 411–418 (2013). https://doi.org/10.1063/1.4794605

    Article  CAS  Google Scholar 

  109. K.H. Tsai, T.M. Wu, S.F. Tsay, Revisiting anomalous structures in liquid Ga. J. Chem. Phys. 132, 4565 (2010). https://doi.org/10.1063/1.3294565

    Article  CAS  Google Scholar 

  110. Y. Qi, M. Miyahara, S. Iwata, E. Miyako, Light-activatable liquid metal immunostimulants for cancer nanotheranostics. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305886

    Article  Google Scholar 

  111. R. Tutika, S.H. Zhou, R.E. Napolitano, M.D. Bartlett, Mechanical and functional tradeoffs in multiphase liquid metal, solid particle soft composites. Adv. Funct. Mater. 28, 4336 (2018). https://doi.org/10.1002/adfm.201804336

    Article  CAS  Google Scholar 

  112. J.J. Yan, M.H. Malakooti, Z. Lu, Z.Y. Wang, N. Kazem, C.F. Pan, M.R. Bockstaller, C. Majidi, K. Matyjaszewski, Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14, 684–690 (2019). https://doi.org/10.1038/s41565-019-0454-6

    Article  CAS  PubMed  Google Scholar 

  113. B.L. He, S. Liu, X.Y. Zhao, J.X. Liu, Q. Ye, S.J. Liu, W.M. Liu, Dialkyl dithiophosphate-functionalized gallium-based liquid-metal nanodroplets as lubricant additives for antiwear and friction reduction. Acs Appl. Nano Mater. 3, 10115–10122 (2020). https://doi.org/10.1021/acsanm.0c02092

    Article  CAS  Google Scholar 

  114. Y. Xu, R. Rothe, D. Voigt, S. Hauser, M.Y. Cui, T. Miyagawa, M.P. Gaillez, T. Kurth, M. Bornhäuser, J. Pietzsch et al., Convergent synthesis of diversified reversible network leads to liquid metal-containing conductive hydrogel adhesives. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-22675-2

    Article  PubMed  PubMed Central  Google Scholar 

  115. M.J. Regan, H. Tostmann, P.S. Pershan, O.M. Magnussen, E. DiMasi, B.M. Ocko, M. Deutsch, X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B 55, 10786–10790 (1997). https://doi.org/10.1103/PhysRevB.55.10786

    Article  CAS  Google Scholar 

  116. M.D. Dickey, Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6, 18369–18379 (2014). https://doi.org/10.1021/am5043017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. K. Khoshmanesh, S.Y. Tang, J.Y. Zhu, S. Schaefer, A. Mitchell, K. Kalantar-Zadeh, M.D. Dickey, Liquid metal enabled microfluidics. Lab Chip 17, 974–993 (2017). https://doi.org/10.1039/c7lc00046d

    Article  CAS  PubMed  Google Scholar 

  118. C. Sealy, E. Rosta, Nanoparticles drive self-limiting nanostructure assembly. Nano Today 41, 101322 (2021). https://doi.org/10.1016/j.nantod.2021.101322

    Article  CAS  Google Scholar 

  119. P. Aukarasereenont, A. Goff, C.K. Nguyen, C.F. McConville, A. Elbourne, A. Zavabeti, T. Daeneke, Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chem. Soc. Rev. 51, 1253–1276 (2022). https://doi.org/10.1039/d1cs01166a

    Article  CAS  PubMed  Google Scholar 

  120. M.Q. Zeng, H. Cao, Q.Q. Zhang, X.W. Gao, L. Fu, Self-Assembly of metal oxide nanoparticles in liquid metal toward nucleation control for graphene single-crystal arrays. Chem 4, 626–636 (2018). https://doi.org/10.1016/j.chempr.2017.12.026

    Article  CAS  Google Scholar 

  121. N. Syed, A. Zavabeti, K.A. Messalea, E. Della Gaspera, A. Elbourne, A. Jannat, M. Mohiuddin, B.Y. Zhang, G.L. Zheng, L. Wang et al., Wafer-sized ultrathin gallium and indium nitride nanosheets through the ammonolysis of liquid metal derived oxides. J. Am. Chem. Soc. 141, 104–108 (2019). https://doi.org/10.1021/jacs.8b11483

    Article  CAS  PubMed  Google Scholar 

  122. V. Okatenko, L. Castilla-Amorós, D.C. Stoian, J. Vávra, A. Loiudice, R. Buonsanti, The native oxide skin of liquid metal ga nanoparticles prevents their rapid coalescence during electrocatalysis. J. Am. Chem. Soc. 144, 10053–10063 (2022). https://doi.org/10.1021/jacs.2c03698

    Article  CAS  PubMed  Google Scholar 

  123. R.A. Ismail, Characteristics of bismuth trioxide film prepared by rapid thermal oxidation. e-J. Surf. Sci. Nanotechnol. 4, 563–565 (2006). https://doi.org/10.1380/ejssnt.2006.563

    Article  CAS  Google Scholar 

  124. J.Y. **a, M.T. Tang, C. Chen, S.M. **, Y.M. Chen, Preparation of α-BiO from bismuth powders through low-temperature oxidation. Trans. Nonferrous Metals Soc. China 22, 2289–2294 (2012). https://doi.org/10.1016/S1003-6326(11)61462-3

    Article  CAS  Google Scholar 

  125. P. Atkin, R. Orrell-Trigg, A. Zavabeti, N. Mahmood, M.R. Field, T. Daeneke, I.S. Cole, K. Kalantar-Zadeh, Evolution of 2D tin oxides on the surface of molten tin. Chem. Commun. 54, 2102–2105 (2018). https://doi.org/10.1039/c7cc09040d

    Article  CAS  Google Scholar 

  126. J.M. Mulhouse, D. De Steven, R.F. Lide, R.R. Sharitz, Effects of dominant species on vegetation change in Carolina bay wetlands following a multi-year drought. J. Torrey Bot. Soc. 132, 411–420 (2005). https://doi.org/10.3159/1095-5674

    Article  Google Scholar 

  127. M.R. Khan, C.B. Eaker, E.F. Bowden, M.D. Dickey, Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. USA 111, 14047–14051 (2014). https://doi.org/10.1073/pnas.1412227111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. W. Monnens, B. Zhang, Z. Zhou, L. Snels, K. Binnemans, F. Molina-Lopez, J. Fransaer, Scalable electrodeposition of liquid metal from an acetonitrile-based electrolyte for highly integrated stretchable electronics. Adv. Mater. (2023). https://doi.org/10.1002/adma.202305967

    Article  PubMed  Google Scholar 

  129. J. Yan, Y. Lu, G. Chen, M. Yang, Z. Gu, Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47, 2518–2533 (2018). https://doi.org/10.1039/c7cs00309a

    Article  CAS  PubMed  Google Scholar 

  130. J. Ma, F. Krisnadi, M.H. Vong, M. Kong, O.M. Awartani, M.D. Dickey, Sha** a soft future: patterning liquid metals. Adv. Mater. (2023). https://doi.org/10.1002/adma.202205196

    Article  PubMed  PubMed Central  Google Scholar 

  131. J. Tang, S. Lambie, N. Meftahi, A.J. Christofferson, J. Yang, M.B. Ghasemian, J. Han, F.-M. Allioux, M.A. Rahim, M. Mayyas et al., Unique surface patterns emerging during solidification of liquid metal alloys. Nat. Nanotechnol. 16, 431–439 (2021). https://doi.org/10.1038/s41565-020-00835-7

    Article  CAS  PubMed  Google Scholar 

  132. S. Liu, Z. Xu, G. Li, Z. Li, Z. Ye, Z. Xu, W. Chen, D. **, X. Ma, Ultrasonic-enabled nondestructive and substrate-independent liquid metal ink sintering. Adv. Sci. 10, 1292 (2023). https://doi.org/10.1002/advs.202301292

    Article  CAS  Google Scholar 

  133. L. Sheng, J. Zhang, J. Liu, Diverse transformations of liquid metals between different morphologies. Adv. Mater. 26, 6036–6042 (2014). https://doi.org/10.1002/adma.201400843

    Article  CAS  PubMed  Google Scholar 

  134. A.B.M.T. Haque, R. Tutika, R.L. Byrum, M.D. Bartlett, Programmable liquid metal microstructures for multifunctional soft thermal composites. Adv. Funct. Mater. 30, 832 (2020). https://doi.org/10.1002/adfm.202000832

    Article  CAS  Google Scholar 

  135. Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu, Y. Hu, R. Sun, C.-P. Wong, Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00766-5

    Article  Google Scholar 

  136. Y.L. Lin, J. Genzer, W.H. Li, R.R. Qiao, M.D. Dickey, S.Y. Tang, Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene-maleic anhydride) in aqueous solutions. Nanoscale 10, 19871–19878 (2018). https://doi.org/10.1039/c8nr05600e

    Article  CAS  PubMed  Google Scholar 

  137. S. Chen, H.Z. Wang, R.Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2, 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016

    Article  Google Scholar 

  138. Y.L. Lin, J. Genzer, M.D. Dickey, Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv. Sci. 7, 192 (2020). https://doi.org/10.1002/advs.202000192

    Article  CAS  Google Scholar 

  139. E. Miyako, Convergence of liquid metal biotechnologies for our health. Acc. Mater. Res. 2, 858–862 (2021). https://doi.org/10.1021/accountsmr.1c00126

    Article  CAS  Google Scholar 

  140. S. Merhebi, M. Mohammad, M. Mayyas, R. Abbasi, C. Zhang, S. Cai, F. Centurion, W. **e, Z. Cao, J. Tang et al., Post-transition metal/polymer composites for the separation and sensing of alkali metal ions. J. Mater. Chem. A 9, 19854–19864 (2021). https://doi.org/10.1039/d1ta02664j

    Article  CAS  Google Scholar 

  141. R. Zheng, Z. Peng, Y. Fu, Z. Deng, S. Liu, S. **ng, Y. Wu, J. Li, L. Liu, A novel conductive core-shell particle based on liquid metal for fabricating real-time self-repairing flexible circuits. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201910524

    Article  Google Scholar 

  142. P. Zhu, S.S. Gao, H. Lin, X.Y. Lu, B.W. Yang, L.L. Zhang, Y. Chen, J.L. Shi, Inorganic nanoshell-stabilized liquid metal for targeted photonanomedicine in NIR-II biowindow. Nano Lett. 19, 2128–2137 (2019). https://doi.org/10.1021/acs.nanolett.9b00364

    Article  CAS  PubMed  Google Scholar 

  143. F. Hoshyargar, J. Crawford, A.P. O’Mullane, Galvanic replacement of the liquid metal galinstan. J. Am. Chem. Soc. 139, 1464–1471 (2016). https://doi.org/10.1021/jacs.6b05957

    Article  CAS  PubMed  Google Scholar 

  144. J.-J. Hu, M.-D. Liu, Y. Chen, F. Gao, S.-Y. Peng, B.-R. **e, C.-X. Li, X. Zeng, X.-Z. Zhang, Immobilized liquid metal nanoparticles with improved stability and photothermal performance for combinational therapy of tumor. Biomaterials 207, 76–88 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.043

    Article  CAS  PubMed  Google Scholar 

  145. L. Castilla-Amorós, D. Stoian, J.R. Pankhurst, S.B. Varandili, R. Buonsanti, Exploring the chemical reactivity of gallium liquid metal nanoparticles in galvanic replacement. J. Am. Chem. Soc. 142, 19283–19290 (2020). https://doi.org/10.1021/jacs.0c09458

    Article  CAS  PubMed  Google Scholar 

  146. Z.H. Guo, J.S. Lu, D. Wang, W.S. **e, Y.J. Chi, J.Z. Xu, N. Takuya, J.X. Zhang, W.L. Xu, F. Gao et al., Galvanic replacement reaction for in situ fabrication of litchi-shaped heterogeneous liquid metal-Au nano-composite for radio-photothermal cancer therapy. Bioact. Mater. 6, 602–612 (2021). https://doi.org/10.1016/j.bioactmat.2020.08.033

    Article  CAS  PubMed  Google Scholar 

  147. L. Wang, J. Zhang, X. Zhang, G. Shi, Y. He, Z. Cui, X. Zhang, P. Fu, M. Liu, X. Qiao et al., High colloidal stable carbon dots armored liquid metal nano-droplets for versatile 3D/4D printing through digital light processing (DLP). Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12609

    Article  Google Scholar 

  148. C. Zhang, F.-M. Allioux, M.A. Rahim, J. Han, J. Tang, M.B. Ghasemian, S.-Y. Tang, M. Mayyas, T. Daeneke, P. Le-Clech et al., Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles. Chem. Mater. 32, 4808–4819 (2020). https://doi.org/10.1021/acs.chemmater.0c01615

    Article  CAS  Google Scholar 

  149. H. Lu, S.Y. Tang, J. Zhu, X. Huang, H. Forgham, X. Li, A. Shen, G. Yun, J. Hu, S. Zhang et al., Nanoengineering liquid metal core-shell nanostructures. Adv. Func. Mater. (2023). https://doi.org/10.1002/adfm.202311300

    Article  Google Scholar 

  150. E.J. Krings, H. Zhang, S. Sarin, J.E. Shield, S. Ryu, E.J. Markvicka, Lightweight, thermally conductive liquid metal elastomer composite with independently controllable thermal conductivity and density. Small (2021). https://doi.org/10.1002/smll.202104762

    Article  PubMed  Google Scholar 

  151. Y.S. Wang, S.N. Wang, H. Chang, W. Rao, Galvanic replacement of liquid metal/reduced graphene oxide frameworks. Adv. Mater. Interfaces (2020). https://doi.org/10.1002/admi.202000626

    Article  Google Scholar 

  152. F. Yu, J.L. Xu, H.Q. Li, Z.Z. Wang, L.M. Sun, T. Deng, P. Tao, Q. Liang, Ga-In liquid metal nanoparticles prepared by physical vapor deposition. Prog. Nat. Sci.-Mater. Int. 28, 28–33 (2018). https://doi.org/10.1016/j.pnsc.2017.12.004

    Article  CAS  Google Scholar 

  153. H. Yu, W. Zhao, L. Ren, H. Wang, P. Guo, X. Yang, Q. Ye, D. Shchukin, Y. Du, S. Dou et al., Laser-generated supranano liquid metal as efficient electron mediator in hybrid perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.202001571

    Article  PubMed  PubMed Central  Google Scholar 

  154. W.B. Zhou, F.L. Cheng, C.Y. Cai, Y. Fu, Bioinspired dry-state polylactic acid adhesives-based wearable sensor with reversible adhesive performance in harsh environments via building hierarchical liquid metal bead structure. Compos. Sci. Technol. (2023). https://doi.org/10.1016/j.compscitech.2023.110207

    Article  Google Scholar 

  155. G. **, Y. Sun, J. Geng, X. Yuan, T. Chen, H. Liu, F. Wang, L. Sun, Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.105896

    Article  Google Scholar 

  156. S. Chen, H.Z. Wang, T.Y. Liu, J. Liu, Liquid metal smart materials toward soft robotics. Adv. Intell. Syst. (2023). https://doi.org/10.1002/aisy.202200375

    Article  Google Scholar 

  157. B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du, X. Guo, J. Zhang, L. Wu, J. Deng, D.W. Zhang et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. (2023). https://doi.org/10.1007/s40820-023-01043-3

    Article  Google Scholar 

  158. J. Shu, D.A. Ge, E. Wang, H. Ren, T. Cole, S.Y. Tang, X. Li, X. Zhou, R. Li, H. ** et al., A liquid metal artificial muscle. Adv. Mater. (2021). https://doi.org/10.1002/adma.202103062

    Article  PubMed  Google Scholar 

  159. B. Feng, X. Jiang, G. Zou, W. Wang, T. Sun, H. Yang, G. Zhao, M. Dong, Y. **ao, H. Zhu et al., Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv. Func. Mater. 31, 2102359 (2021). https://doi.org/10.1002/adfm.202102359

    Article  CAS  Google Scholar 

  160. L.Y. Zhou, J.Z. Fu, Q. Gao, P. Zhao, Y. He, All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal–silicone inks. Adv. Funct. Mater. 30, 1906683 (2020). https://doi.org/10.1002/adfm.201906683

    Article  CAS  Google Scholar 

  161. T.J. Roberts, Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J. Exp. Biol. 219, 266–275 (2016). https://doi.org/10.1242/jeb.124446

    Article  PubMed  PubMed Central  Google Scholar 

  162. J. Liao, C. Majidi, M. Sitti, Liquid metal actuators: a comparative analysis of surface tension controlled actuation. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300560

    Article  PubMed  Google Scholar 

  163. M. Karbalaei Akbari, S. Zhuiykov, A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 10, 3873 (2019). https://doi.org/10.1038/s41467-019-11823-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. M.W. Sahara, J.A. Marutani, A.T. Ohta, W.A. Shiroma, A tunable parallel-plate capacitor using liquid-metal actuation. 2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS) 1–6 (2021). https://doi.org/10.1109/WMCS52222.2021.9493290

  165. C.B. Eaker, M.D. Dickey, Liquid metal actuation by electrical control of interfacial tension. Appl. Phys. Rev. 3, 031103 (2016). https://doi.org/10.1063/1.4959898

    Article  CAS  Google Scholar 

  166. M. Song, K.E. Daniels, A. Kiani, S. Rashid-Nadimi, M.D. Dickey, Interfacial tension modulation of liquid metal via electrochemical oxidation. Adv. Intell. Syst. 3, 2100024 (2021). https://doi.org/10.1002/aisy.202100024

    Article  Google Scholar 

  167. J. Ye, Y.-C. Yao, J.-Y. Gao, S. Chen, P. Zhang, L. Sheng, J. Liu, LM-jelly: liquid metal enabled biomimetic robotic jellyfish. Soft Rob. 9, 1098–1107 (2022). https://doi.org/10.1089/soro.2021.0055

    Article  Google Scholar 

  168. J. Liao, C. Majidi, Muscle-inspired linear actuators by electrochemical oxidation of liquid metal bridges. Adv. Sci. 9, 2201963 (2022). https://doi.org/10.1002/advs.202201963

    Article  CAS  Google Scholar 

  169. C.P. Frick, D.R. Merkel, C.M. Laursen, S.A. Brinckmann, C.M. Yakacki, Copper-coated liquid-crystalline elastomer via bioinspired polydopamine adhesion and electroless deposition. Macromol. Rapid Commun. 37, 1912–1917 (2016). https://doi.org/10.1002/marc.201600363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. T.G. Thuruthel, B. Shih, C. Laschi, M.T. Tolley, Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 4, eaav1488 (2019). https://doi.org/10.1126/scirobotics.aav1488

    Article  PubMed  Google Scholar 

  171. S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen, Y. Liu, L. Yang, X. Xu, L. Wang, Highly stretchable and conductive mxene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309899

    Article  Google Scholar 

  172. B. Ma, C. Xu, L. Cui, C. Zhao, H. Liu, Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence. Acs Appl. Mater. Interfaces 13, 5574–5582 (2021). https://doi.org/10.1021/acsami.0c20418

    Article  CAS  PubMed  Google Scholar 

  173. H. Zhang, X. Yang, C. Valenzuela, Y. Chen, Y. Yang, S. Ma, L. Wang, W. Feng, Wireless power transfer to electrothermal liquid crystal elastomer actuators. ACS Appl. Mater. Interfaces 15, 27195–27205 (2023). https://doi.org/10.1021/acsami.3c03817

    Article  CAS  PubMed  Google Scholar 

  174. P. Grabowski, J. Haberko, P. Wasylczyk, Photo-mechanical response dynamics of liquid crystal elastomer linear actuators. Materials 13, 2933 (2020). https://doi.org/10.3390/ma13132933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Q. He, Z. Wang, Y. Wang, A. Minori, M.T. Tolley, S. Cai, Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Sci. Adv. 5, 5746 (2019). https://doi.org/10.1126/sciadv.aax5746

    Article  CAS  Google Scholar 

  176. Y. Lee, J. Park, A. Choe, S. Cho, J. Kim, H. Ko, mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020). https://doi.org/10.1002/adfm.201904523

    Article  CAS  Google Scholar 

  177. N. Matsuhisa, X. Chen, Z. Bao, T. Someya, Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019). https://doi.org/10.1039/C8CS00814K

    Article  CAS  PubMed  Google Scholar 

  178. B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable E-skin and E-textile devices. Adv. Mater. 31, 1901408 (2019). https://doi.org/10.1002/adma.201901408

    Article  CAS  Google Scholar 

  179. X. Li, P. Zhu, S. Zhang, X. Wang, X. Luo, Z. Leng, H. Zhou, Z. Pan, Y. Mao, A. Self-Supporting, Conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin. ACS Nano 16, 5909–5919 (2022). https://doi.org/10.1021/acsnano.1c11096

    Article  CAS  PubMed  Google Scholar 

  180. J. Yin, P. Aspinall, V.J. Santos, J.D. Posner, Measuring dynamic shear force and vibration with a bioinspired tactile sensor skin. Ieee Sens. J. 18, 3544–3553 (2018). https://doi.org/10.1109/JSEN.2018.2811407

    Article  CAS  Google Scholar 

  181. H. Zhang, H.B. Zhao, X.Y. Zhao, C.K. Xu, D. Franklin, A. Vázquez-Guardado, W.B. Bai, J. Zhao, K. Li, G. Monti et al., Biocompatible light guide-assisted wearable devices for enhanced UV light delivery in deep skin. Adv. Funct. Mater. 31, 576 (2021). https://doi.org/10.1002/adfm.202100576

    Article  CAS  Google Scholar 

  182. H. Chen, I. Furfaro, S.P. Lacour, Bioinspired liquid metal based sensing system for compliance detection. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) 51–54 (2021). https://doi.org/10.1109/MEMS51782.2021.9375380

  183. J.P. Wissman, K. Sampath, C.A. Rohde, Liquid metal-based bio-inspired capacitive flow sensor. Bioinspir. Biomim. Biorepl. IX 27, 355 (2019). https://doi.org/10.1117/12.2514355

    Article  Google Scholar 

  184. T. Kim, D.-M. Kim, B.J. Lee, J. Lee, Soft and deformable sensors based on liquid metals. Sensors 19, 4250 (2019). https://doi.org/10.3390/s19194250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. S. Mu, S. Li, H. Zhao, Z. Wang, X. **ao, X. **ao, Z. Lin, Z. Song, H. Tang, Q. Xu et al., A platypus-inspired electro-mechanosensory finger for remote control and tactile sensing. Nano Energy 116, 108790 (2023). https://doi.org/10.1016/j.nanoen.2023.108790

    Article  CAS  Google Scholar 

  186. A.V. Singh, G. Bansod, M. Mahajan, P. Dietrich, S.P. Singh, K. Rav, A. Thissen, A.M. Bharde, D. Rothenstein, S. Kulkarni et al., Digital transformation in toxicology: improving communication and efficiency in risk assessment. ACS Omega 8, 21377–21390 (2023). https://doi.org/10.1021/acsomega.3c00596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. K. Zheng, F. Gu, H.J. Wei, L.J. Zhang, X. Chen, H.L. **, S. Pan, Y.H. Chen, S. Wang, Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human-machine interaction. Small Methods 7, 534 (2023). https://doi.org/10.1002/smtd.202201534

    Article  CAS  Google Scholar 

  188. X. Xue, D. Zhang, Y. Wu, R. **ng, H. Li, T. Yu, B. Bai, Y. Tao, M.D. Dickey, J. Yang, Segregated and non-settling liquid metal elastomer via jamming of elastomeric particles. Adv. Funct. Mater. 33, 2210553 (2023). https://doi.org/10.1002/adfm.202210553

    Article  CAS  Google Scholar 

  189. P.G. Kulkarni, N. Paudel, S. Magar, M.F. Santilli, S. Kashyap, A.K. Baranwal, P. Zamboni, P. Vasavada, A. Katiyar, A.V. Singh, Overcoming challenges and innovations in orthopedic prosthesis design: an interdisciplinary perspective. Biomed. Mater. Devices 2, 1–12 (2023). https://doi.org/10.1007/s44174-023-00087-8

    Article  Google Scholar 

  190. L. Mou, J. Qi, L.X. Tang, R.H. Dong, Y. **a, Y. Gao, X.Y. Jiang, Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small 16, 336 (2020). https://doi.org/10.1002/smll.202005336

    Article  CAS  Google Scholar 

  191. A. Mitra, K. Xu, S. Babu, J.H. Choi, J.B. Lee, Liquid-metal-enabled flexible metasurface with self-healing characteristics. Adv. Mater. Interfaces 9, 141 (2022). https://doi.org/10.1002/admi.202102141

    Article  CAS  Google Scholar 

  192. N.N.F. Nik Md Noordin Kahar, A.F. Osman, E. Alosime, N. Arsat, N.A. Mohammad Azman, A. Syamsir, Z. Itam, Z.A. Abdul Hamid, The versatility of polymeric materials as self-healing agents for various types of applications: a review. Polymers 13(8), 1194 (2021). https://doi.org/10.3390/polym13081194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Self-healing materials with microvascular networks. Nat. Mater. 6, 581–585 (2007). https://doi.org/10.1038/nmat1934

    Article  CAS  PubMed  Google Scholar 

  194. C.H. Li, J.L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32, 1903762 (2020). https://doi.org/10.1002/adma.201903762

    Article  CAS  Google Scholar 

  195. Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang, Q. Fu, S. Wang, S. Nie, Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32, 2201846 (2022). https://doi.org/10.1002/adfm.202201846

    Article  CAS  Google Scholar 

  196. Y. Wu, L. Huang, X. Huang, X. Guo, D. Liu, D. Zheng, X. Zhang, R. Ren, D. Qu, J. Chen, A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 10, 1854–1861 (2017). https://doi.org/10.1039/C7EE01798G

    Article  CAS  Google Scholar 

  197. Y. Li, T. Fang, J. Zhang, H. Zhu, Y. Sun, S. Wang, Y. Lu, D. Kong, Ultrasensitive and ultrastretchable electrically self-healing conductors. Proc. Natl. Acad. Sci. USA 120, e2300953120 (2023). https://doi.org/10.1073/pnas.2300953120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. F. Sun, L. Liu, T. Liu, X. Wang, Q. Qi, Z. Hang, K. Chen, J. Xu, J. Fu, Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor. Nat. Commun. 14, 130 (2023). https://doi.org/10.1038/s41467-023-35810-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. J. Xu, L. Zhu, Y. Nie, Y. Li, S. Wei, X. Chen, W. Zhao, S. Yan, Advances and challenges of self-healing elastomers: a mini review. Materials 15, 5993 (2022). https://doi.org/10.3390/ma15175993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Y. Peng, H. Liu, H. Peng, J. Zhang, Biological self-healing strategies from mechanically robust heterophasic liquid metals. Matter 6, 226–238 (2023). https://doi.org/10.1016/j.matt.2022.10.012

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China under Grant No. 2021YFA1401103 and the National Natural Science Foundation of China under Grants 61825403, 61921005, and 61674078.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FW and XS; validation, XP, YC, LP, and YS; formal analysis, FW and XS; investigation, FW, XS, XG, and JW; resources, XP and YC; data curation, FW, YZ, and XG; writing—original draft preparation, FW, XS, and YZ; writing—review and editing, FW and YZ; visualization, XP, YC, LP, and YS; supervision, LP and YS; project administration, LP and YS; funding acquisition, XP, YC, LP, and YS. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to **ngming Pan, Yuanyuan Cen, Lijia Pan or Yi Shi.

Ethics declarations

Conflict of interest

There is no competing interest between authors on this submitted work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Sun, X., Zhou, Y. et al. Recent Advances in Liquid Metal-Based Flexible Devices with Highly Sensitive, Plastic and Biocompatible in Bionic Electronics. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-024-00178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-024-00178-0

Keywords

Navigation